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Abstract

At any given moment, engineering and chemical companies have a host of projects
that they are either trying to screen to advance to the next stage of research or select
from for implementation. These choices could range from a relative few, like the
expansion of production capacity of a particular plant, to a large number, such as
the screening for candidate compounds for the active pharmaceutical ingredient in a
drug development program. This choice problem is very often further complicated
by the presence of uncertainty in the project outcomes and introduces an element of
risk into the screening or decision process.

It is the task of the process designer to prune the set of available options, or in
some cases, generate a set of possible choices, in the presence of such uncertainties to
provide recommendations that are in line with the objectives of the ultimate decision
maker. Screening and decision rules already exist that do this but the problem with
most of them is that they add more assumptions to the structure of the preferences
of the decision maker, or to the form of the uncertain distribution that characterizes
the project outcome, than is known at the time. These challenges may lead to the
screening out of viable alternatives and may ultimately lead to the selection of inferior
projects.

This thesis aims to demonstrate the applicability of Stochastic Dominance as
method that can overcome these obstacles. Stochastic Dominance has been shown
to be a general method for incorporating risk preferences into the decision-making
process. It is consistent with classical decision theory, it makes minimal assumptions
of the structure of the utility functions of the decision makers and of the nature of
the distributions of the uncertainty and under certain conditions can be shown to be
equivalent to the other objectives.

In this work, an up-to-date review and an implementation framework for Stochas-
tic Dominance is presented. The performance of the method relative to some of the
other screening and decision objectives is examined in the light of three case studies:
the design of a reactor-separator system for the production of a chemical, the selec-
tion of a crop for biomass production and the design of a biomass to liquids process.
The limitations of the method are also discussed together with suggestions for how
they can be overcome to make the method more e↵ective.
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Chapter 1

A New Approach to Project
Selection and Design

1.1 Introduction

At any given moment, engineering and chemical companies have a host of projects
that they are trying to select from for implementation. These choices could range
from a relative few to a large number. For example, the choice of expanding the
production capacity for a chemical usually consists of two alternatives - increase the
capacity of an existing plant or build a new one. One the other hand, for every
drug that makes it to eventual market, pharmaceutical companies often begin with a
large number of possible molecules to investigate. In both these cases, the firms are
often constrained by a budget, expectations of their stockholders and the market (for
publicly held firms), or the desires of owner/board that makes the choice problem
real and precludes them from the pursuing all the options placed before them.

However, perhaps the biggest challenge in making project decisions is the uncer-
tain nature of the outcomes of the projects. The success of a new drug for example
depends on its e�cacy versus existing treatments, passing clinical trials and FDA ap-
proval and while that of a new carbon-reducing technology on other things like future
price of crude oil, uncertainty in demand etc. This uncertainty introduces an element
of risk - the possibility of failing to meet set goals - into the decision process and
managing this risk e↵ectively by wisely selecting (or designing) projects for execution
that are in line with the overall goals and preferences of the firm and its stakeholders
is what successful firms learn to do in practice.

Project design and selection is not an new problem and as such several approaches
have been developed to address the issue. Firms use expected value measures, key
performance indicators, weighted average cost of capital and a host of other measures
that are created to help with this decision. The problem with many of them though is
that they come with assumptions on preferences of the decision-maker or the structure
of the uncertainty present in the projects for them to make good choices among
di↵erent uncertain options. These assumptions are often unstated/implicitly assumed
when the rules are used and so can give rise to a mismatch between the desires
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and attitudes of the decision maker and the final project choice, thus increasing the
likelihood that poor project decisions will be made to the possible detriment of the
firm.

This thesis presents a new approach to project selection/design under uncertainty
that reduces/eliminates this danger. This new approach is able to incorporate prefer-
ences of decision makers to the degree that it is known and to use these to e↵ectively
screen projects and ultimately help select among them. It doesn’t make assumptions
on the nature of the distributions of the uncertainty as well and as such has a broader
application scope than many of the currently used methods.

With this approach, it is our hope that decision-makers will now be able to bet-
ter explore the decision options available and can make quality decision, improving
resource allocation within the firm that ultimately benefits their stakeholders and
possibly the community at large.

1.2 Motivating Problem

Increasing concern about the rate of use of fossil fuels to power today’s global economy
as well as the security issues that go hand in hand with the increase in fossil fuel use
has led a lot of countries to invest heavily in the development of renewable, greener
sources of energy in the near future to replace the ubiquitous fossil fuels.

Consider an energy firm considering the portfolio of projects to invest in over the
next project period. Such a firm faces a set of options that can be categorized into
three large groups as follows:

• The choice of raw/starting materials

• The choice of chemical/material transformation

• The choice of final product(s) to manufacture

Examples of these are illustrated in Figure 1-1. In this structure, a project choice
will correspond to a path through the network. For example, the construction of
a solar farm will be grouped in the nature-mechanical/electrical-electricity category,
the production of industrial chemicals from crude oil using microbes (find reference?)
will be classified in the fossil fuels-biological-fuels/chemicals category and production
of ethanol and other fuels using gasification and gas-to-liquids technology will be
classified in the biomass-thermochemical-fuels category.

Even within each category just described, it is possible for there to be yet another
level of choice. If the thermochemical transformation of biomass described above
is selected, for example, there are several di↵erent decisions that have to be made
regarding the particular choice (or choices) of biomass feed, gasifier type, catalysts
for the Fischer-Tropsh reactors as well as the product mix that could result in vastly
di↵erent design structures. These di↵erent options are highlighted in Figure 1-2 where
a typical process diagram for a biomass-to-liquids plant is illustrated together with a
list of possible choices for the di↵erent sections.
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Biomass

Nature

Fossil Fuels/
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Biological

Thermo-
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Mechanical/
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Fuels

Electricity

Raw material Process pathway Final product

Figure 1-1: An illustrative network for investment in energy. The leftmost column
gives examples of raw materials, the middle for process transformation options and
the rightmost column for possible products
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Figure 1-2: Expansion of project choices from Figure 1-1. Text shows the di↵erent options embedded in each choice of raw
material, process pathway and final product selected. Adapted from [17]
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Figure 1-3: The main elements of the design problem

1.3 Process Design and Uncertainty

Process design is essentially the art of systematically examining these alternatives to
eventually recommend a project or a set of projects for either further investigation or
for investment. We breakdown the design problem into into four main sub-problems
outlined below and illustrated in Figure 1-3:

1. Building models/pilot plants

2. Selection of metrics

3. Evaluation and comparison of alternatives

4. Incorporation of constraints

To fully understand the processes that we ultimately intend to build/implement,
it is necessary to understand them and this is often achieved through the use of
models/pilot plants. The understanding of the science and engineering behind the
common processes in Chemical Engineering - heat transfer, separation, fluid trans-
port, etc - together with an increase in the availability of cheap computing power
has led to the growth and popularity of mathematical models to represent chemical
processes and today, special software like Aspen [3], help us to quickly build process
flow diagrams representing complex chemical systems.

Evaluation and comparison of the numerous possible configurations that can result
from a design is a big challenge. To do this e�ciently, a superstructure containing all
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the possible project choices (cite or display image) is often constructed and e↵ective
algorithms [28], [16], [41] created for the e�cient examination of these options.

Decisions among the many possible configurations requires some objective criteria
for ranking and the traditional metrics of choice have usually been economic [116],
with an eye towards process reliability and safety [105]. However, increasing concern
about global warming and sustainable energy has led the environmental considera-
tions to be an important metric in process design [21], [30] and it is the job of the
designer to use these using di↵erent (and sometimes incommensurable) metrics to
make decisions.

Finally, the designer has to be aware of di↵erent regulations and constraints that
guide the design of the plant as these often constrain the set of possible designs.
There are often economic constraints like the budget, and the minimum acceptable
return for the investment; environmental/regulatory constraints that determine emis-
sion levels hazardous waste materials and land use or other zoning police constraints
that a↵ect the siting of plants as well as technological constraints (second law e�-
ciency, equilibrium concentrations in reactors etc) that limit the extent of what can
be obtained.

All of these have comprised the classic challenges that have a↵ected process design
and are largely addressed in some fashion in many of the standard books on chemical
engineering design today [112], [116], [103]. In the presence of a single metric (or a
weighted combination of a number of di↵erent problems), the design problem becomes
an optimization problem which can be represented in general as

min f(x)

s.t. g(x)  0

h(x) = 0

x 2 D

(1.1)

where D is the feasible set of the design problem and can incorporate the fact that
X includes integer and continious variables. Graphically, the optimization problem in
two dimensions is illustrated in Figure 1-4. The area enclosed by the blue curves is the
feasible region and the red curves illustrate the (non-linear) objective function which
is increasing in the north-eastern direction. The optimum occurs where there is no
increase in the objective function that results in a feasible point. This point is marked
by the red dot and is the design point selected. More discussion on optimization and
techniques for finding optimal solutions can be found in the appendix.

However, one major challenge that gets little treatment in many of these is the
presence of uncertainty in the design. The incorporation of uncertainty into the
design process a↵ects all the elements mentioned above as is highlighted in Figure
1-5 and ultimately expands the design problem in each of the elements. With respect
to building models, uncertainty in our knowledge of the process kinetics poses the
challenge to design adequate experiments to narrow the range of our uncertainty, the
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Figure 1-4: Graphical illustration of optimization problem for classical design

selection of the best (family of) models that incorporate the most of what we know
about the project at the present time and the ability to tune this models to best
represent the cases at hand by the proper determination of the models parameters.

Uncertainty in the model inputs and the model structure in turn tends to af-
fect the model outputs that we care about (profit, safety and sustainability) and to
quantify the extent to which this is the case, in addition to determining which vari-
ables/parameters have the largest e↵ect on the outputs, we need to be able to propa-
gate the uncertainties through the models (uncertainty analaysis) and decompose the
uncertainty to the contributions of the di↵erent inputs via a sensitivity analysis. In
addition, as mentioned earlier, uncertainty introduces risk into the decison process
and it is necessary that the selection metrics are constructed so that they properly
reflect the riskiness of each project.

Finally, uncertainty impacts the ability to meet regulations and constraints that
projects have to meet to be implemented. Failure to do this may result in financial,
failure to operate or, even more serious, the loss of life. Designs that fail to prop-
erly account for this by taking uncertainty into are likely to be unsuccessful or, if
implemented, disasters to the firm.

With respect to the solution of the design problem earlier illustrated, the presence
of uncertainty makes the solution of an optimum now ill-defined as is seen Figure
1-6. As can be seen, the objective functions and the constraints are no longer unique
and a range of optima will now be identified as opposed to a unique optimum in the
earlier case.

In tackling this problem, there was the introduction in literature of what we
will henceforth in this thesis refer to as objectives, new metrics that condense the
uncertain problem to the form in 1-4 that can now be solved via traditional techniques.
An example of such an approach is the use of expected value where the uncertain
design problem is rewritten with expectations of the objective function and constraints
used to formulate the problem.
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Figure 1-5: The main elements of the design problem with the introduction of uncer-
tainty

Figure 1-6: The e↵ect of uncertainty on the design problem
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Figure 1-7: An illustration of two projects with di↵erent distributions

The big challenge of these ‘objectives’ are the assumptions they layer on the
preferences of the decision maker as well as the requirements they sometimes have on
the nature of the distribution of the uncertain outcome for them to be optimal. Take
the two projects illustrated in Figure 1-7.

Project A will be selected in a choice between these two using the expected value
metric (expected values are indicated by the vertical blue lines running through the
middle of both projects). However, if real decision makers are presented with this
choice, the selection will not be so clear cut as there will be some that will tend
to prefer project B even though it has a smaller expected value. This is because
it has a smaller spread of outcomes and as such Given these reasons, the overall
e↵ect of uncertainty on the design problem is huge and multi-faceted and research
has gone into tackling many of these areas, much of which will be highlighted in
subsequent chapters in the thesis. The main focus of this work however is in the
proper incorporation of risk and risk preferences into project selection metrics (in
particular, profitability) and this is described some more in the next section.

1.4 Representing and Incorporating Preferences

Once all the relevant uncertainties mentioned above and introduced into the de-
sign/selection problem, it is often the case that the decision maker now has to select
from project choices that are represented not by point estimates but by a distribution
of outcomes.

It is the task of the process designer to prune the set of available options (or
in some cases, generate a set of possible choices) in a way manner is in line with
the objectives of the ultimate decision maker. As mentioned earlier, decision rules
have been in use that do this and are very much in use in industry as a method
for selection. The problem with these is that they usually add more assumptions to
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the structure of the preferences of the decision maker, or the form of the uncertain
distribution that characterizes the project outcome, than is known at the time of the
decision. Take, for example, the expected value measure assumes that the decision
maker is unconcerned about risk, or the traditional mean-variance rule, embodied
by the capital-asset-pricing-model, assumes that uncertainty in the project is either
normally distributed or the decision makers have a very specific type of risk preference.
For the decision-maker who is concerned about accounting for risk in his project
selection choice, the expected value measure will prune out decisions that will likely
have been more preferred by him, in the end o↵ering him a suboptimal project. The
same goes for the decision-maker faced with projects that are non-normal in their
outcome distributions.

To use preferences in decision making, it is necessary to know them and be able
to represent them in a form that is amenable to analysis. With complete informa-
tion, it is possible to represent the particular preference of the decision maker by
a function that can be used in doing decision analysis. This level of information is
however often lacking or di�cult to obtain/measure and we end up with only partial
information usually of a general nature. The framework we develop in this thesis is
adapt to increasing levels of knowledge of the decision maker’s preferences and can
use more knowledge to further prune the set of available decisions. In every case, the
assumptions being made are transparent so that our rules are only as sharp as they
need to be - no more, no less.

1.5 Thesis objectives

The objectives of this thesis are as follows:

1. To present Stochastic Dominance as a viable framework for project
selection and process design under uncertainty.

2. Illustrate how it relates to other known objectives and adequately
handles risk preferences in decision making under uncertainty .

3. Demonstrate its application via the use of a number of case-study
examples and compare with other metrics presently in use.

4. Demonstrate ways in which it can be further refined to give unique
decisions when needed.

1.6 Scope of Thesis

The alternatives that are analyzed in this thesis are mutually exclusive and so portfolio
combinations of these alternatives are not examined. Dynamic decision making, where
modifications to the project can be made after initial implementation and uncertainty
is realized is also not considered . The proposed method at present only handles
discrete options, so continuous variables in the problem structure are discretize before
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any analysis is carried out. Uncertainty is modelled via discrete distributions obtained
via sampling and we deal with parametric uncertainty while assuming the model
structures are certain. All the models are equation based models and simulation
methods1 are used for solving the selection problem that arises from implementing
the framework. Our focus is also limited to the financial evaluation of projects and
we don’t include other objectives although it is our belief that the framework can be
adapted for such use.

1.7 Thesis Outline

After the introduction in this chapter, we continue in Chapter 2 with a review of
literature of process design in the Chemical Engineering literature. We examine some
of the techniques and approaches used to deal with uncertainty and discuss their
shortcomings. We summarize the areas where we see opportunities for contributions
and developments and highlight which are going to be developed in this thesis.

In chapter 3, we take a deeper look at uncertainty and how it a↵ects decision
making. We given an overview of di↵erent frameworks that exist for modelling uncer-
tainty but settle on probability theory for this thesis. We also examine ways to select
among di↵erent distributions as well as how to use sensitivity analysis to determine
key input uncertainties.

Chapter 4 discusses the elements of decision theory and presents utility theory as
the key to understanding and modelling decision makers preferences with a view to
incorporating them into the decision problem.

In chapter 5, we introduce the framework of Stochastic Dominance for decision
making under uncertainty. We show how it relates to di↵erent classes of preferences
within utility theory and explain the mechanism for its implementation and also dis-
cuss improvements on the framework - like Convex and Almost stochastic dominance
- that improve the refinement of the e�cient set. We also briefly introduce other ways
to reduce the e�cient - like the use of alternative metrics and the iterative approach
to using Stochastic Dominance by identifying and reducing the uncertainties in the
key input variables.

Chapters 6, 7 and 8 are the case-studies that we use to fully examine the method-
ology. In chapter 6, we look at the design of a reactor-separator system wher ethe
reaction rates and product prices are uncertain and how these, coupled with pref-
erences of the decision maker, can a↵ect the choice of the capacity of the system.
Chapter 7 examines a subset of the Biomass-to-Liquids problem introduce earlier in
this chapter where the focus is on the selection of an adequate biomass crop as feed for
the plant. Chapter 8 looks at design of the larger BTL system, investigating choices
in raw materials, process technologies and possible product choices. In all these cases,
we compare the results from Stochastic dominance with those from the other metrics
and examine more closely the di↵erences and similarities where they exists to further
illuminate the method’s advantages when compared to others.

1Simulation methods as opposed to mathematical programming techniques
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In chapter 9, we summarizes the key findings and lessons of the thesis and highlight
a numnber of di↵erent directions that one could embark upon with the work presented.
An appendix on mathematical programming essentials as well as one that contains
the essential algorithms used in the methodology are included for the reader.
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Chapter 2

Project Selection: Background and
Review

We begin this chapter with a review of current wisdom in project selection and design
and how it is carried out in practice. The outcome of our analysis is to present identify
some of the key aspects where improvements are needed, laying the ground work for
our discussion of stochastic dominance later in the thesis.

2.1 The Design Process

In the chemical industry (and the larger engineering industry at large), projects that
finally get implemented go through di↵erent phases in the development process. These
phases can, in general be classified into the following stages:

1. Conception and definition

2. System-level design

3. Detail-design

4. Refinement and optimization

5. Implementation

While there are variations in the names and number of stages (see [116], [117],
[103], [112], the descriptions of the overall process is similar. An illustration of the
process as outlined by [117] is given in Figure 2-1

In the first stage, the scope of the project, the market, the kind of product and
a brief outline of its characteristics, or the basic elements of the process are the key
aspects of the design that may be defined. In the second stage, a high-level, input
output model is constructed that gives a fair description of the process/product output
in terms of the input. For example, a process model will relate the key inputs (like
raw materials, energy and costs) into the product output (production rate, revenues)
to a good degree of accuracy.
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Figure 2-1: Illustration of the product development process. Taken from [117]

The third stage involves more detailed design of some of the elements of the system.
So for a chemical process, this is where more accurate models for the separation, heat-
transfer and other elements of the process. In the fourth stage, more attention is paid
to the interactions between the now more-detailed subsystems in the process while in
the final stage, the basic process is optimized around the parameters selected in the
previous stage and the finalized design is then pushed towards implementation which
usually involves engineering, procurement and construction.

2.2 Stage-gates and the Design Process

Companies begin the design process with a large number of products or processes
under consideration in the development pipeline. For example, for every drug that
comes to the market, pharmaceutical companies reportedly begin the development
process with about 10,000 molecules [93]. It is important the that the design process
is able to e↵ectively manage the complexity of such a process.

In addition, as products/projects advance through each stage, there is an increas-
ing cost associated with their evaluation, with a corresponding reduction in the overall
uncertainty in the numbers. This is illustrated in Figure 2-2. To prevent development
costs from ballooning, we have to be able to prune the feasible set of project options
early on.

The stage-gate process is the approach used to manage development cost and
complexity in product and process design. All feasible projects start out at the
beginning of the process. They are analyzed using a procedure and metrics identified
at the outset and at the end of the analysis, they encounter a gate where decisions
about which projects advance to the next stage of analysis or are pruned out of the
list are made. This sequence is repeated/iterated over until a final decision about the
project(s) to be implemented are reached and the process is terminated.

At the end of each stage one of three decisions is made regarding each of the
projects that is still in the pipeline up to that point

1. Proceed

2. Terminate
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Figure 2-2: Illustration of the increase in project cost with design stage and the
reduction in cost associated with it. Taken from [116]

Start
End

Gate 1 Gate 2 Gate J Gate N

Gate decision:
Implement, Terminate,
Advance to next stage

Stage 2 Stage J Stage N

Stage: analysis of projects
takes place to determine 
performance of each on gate
metrics

Total number of projects in pipeline decrease as undesirable projects
get !ltered out over di"erent stages. Goal is to have very few (or just a single)
project at the end.

As projects advance, gate
criteria become stricter

Figure 2-3: An illustration of the stage gate process
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3. Revise

These decisions are based on the outcome of an evaluation on each project. These
evaluations are sometimes based on clear and measurable metrics on which each
project is scored. However, these scores are often subjectively combined to produce an
overall recommendation that generally lies in one of the threee classes above. Projects
that are set to proceed often have satisfied all/most of the significant criteria and are
due for evaluation at the next stage. Projects that are terminated fail on all/most of
the critical dimensions and resources of the company will be better utilized if diverted
elsewhere. An example of a project that fails will be one that does not turn a profit in
the long-term, or another that violates safety or environmental standards. Projects
that are often revised are those that meet some but not all criteria and are potentially
viable if few modifications are made to the present form.

Within each stage though, the decision is often similar: given the set of options
presented, which ones should be selected for further analysis, revised or terminated.
The techniques we develop in this thesis are largely applicable to the projects we want
to select to advance in the stage-process and those we want to reject and we don’t do
much by way of suggestions for revisions. Furthermore

2.3 Metrics for project selection

When projects are selected to advance from a given stage or when they are terminated,
they are often evaluated by scoring them on a number of metrics to objectively com-
pare them with other possible options. Determining these metrics can be challenging
and care needs to be taken to select the right ones.

This thesis is concerned with financial performance as one measure in which pr-
jects can be evaluated and even this has a variety of measures associated with it.
Some of the more popular of these measures include the following: total annual cost,
net present value (NPV), internal rate of return (IRR), payback period, return on
investment (ROI). profitability index (benefit-cost ratio) and the hurdle rate. These
di↵erent criteria are often grouped into three general criteria - quantitative criteria,
which includes the total annualized cost, total profit, etc, qualitative criteria that
include measures like the payback period and the internal rate of return and compro-
mise criteria which includes the net present value [86]. We discuss a number of these
metrics below:

The net present value of a project is a total value of the project over its lifetime,
with the time value of money accounted for. Its value is given by

NPV =
NX

i=1

CFi

(1 + rD)i
� IC (2.1)

where CF is the cashflow (revenues net expenses) in the particular year, i, rD is
the discount rate (assumed constant here otherwise indexed by the year), IC is the
total capital investment in the plant and N is the lifetime of the investment. The net
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present value is the terminal value of the present value of the project, which is just
the cumulative value of a project up to a particular time point i.e.

PVk =
kX

i=1

CFi

(1 + rD)i
� IC (2.2)

The internal rate of return (IRR) is the value of the discount rate that makes the
net present value of the project equal to zero i.e.

IC =
NX

i=1

CFi

(1 + IRR)i
(2.3)

where the equation often has to be solved iteratively to obtain the value of IRR.
The payback period is the length of time it will take for the capital investment

to be recovered from the project returns. The equation to determine the payback
period is similar to the IRR but this time, we are solving for the value of N where
the discount rate is now fixed at a particular value. In the plot of the present value
of a project over its lifetime, the payback period is the time it takes for the present
value to reach zero.

The return on investment is simply a ratio of the profit from the project (before
taxes) to the total capital invested in it. Over the lifetime of the project, this can be
defined as

ROI =

PN
i=1

CFi
(1+IRR)i

IC
(2.4)

The payback period is the amount of time it takes for the project to generate
enough cashflow to repay its investment costs. The discounted payback period is
similar but the cashflows are discounted to account for the time-value of money.
Hurdle rates are minimum internal rates of return that a project must generate to
be considered investment worthy. Projects that have IRRs less than the hurdle rate
are rejected while those greater are accepted. The profitability index is a ratio of the
present value of cashflows to the initial capital investment required for the project.

Of the metrics listed, internal rate of return and the net present value are the
most common metrics selected by Chief Financial O�cers [39]. Novak and Kravanja
[86] carried out a survey of the objective functions used in the synthesis and design of
process flowsheets over a given year and found that only 10% of the papers used the
net present worth (value) as a criterion, with the most dominant being minimization
of cost based metrics which accounted for more than half the 64 papers surveyed.

The reason for the importance in the choice of metric is that it can eventually
a↵ect the choice of project selected. [86] and [53] demonstrate this with di↵erent ex-
amples. In [86], the design of a heat-exchanger network using di↵erent criteria. They
found that quantitative measures favour large projects with smaller (annual) costs
and smaller cashflows, qualitative criteria favour projects with smaller cashflowsh
with larger profitability while the compromise criteria strike an adequate balance
between both.
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The net present value is the best criteria for selecting between mutually exclusive
projects [18]. Bagejewicz [9] discusses this metric in greater detail for the capacity
planning problem and in particular compares it to other metrics like the ROI and
the IRR and like [86] and [53], examines conditions under which the metrics lead to
di↵erent optima.

Thus, even before considering the e↵ect of uncertainty in a project, it is important
to realize that the choice of metric can have an e↵ect on the problem. The pros and
cons of the di↵erent metrics should be weighted appropriately in order to find the one
that corresponds most closely with the context under which the projects are evaluated
before one is selected. In this thesis, we have selected the Net Present Value as the
metric with which the project will be analyzed. As mentioned, this corresponds with
both the wisdom in economic theory [18] as well as the view of practitioners in the
field [39]. While the survey highlighted earlier in Chemical Engineering suggested
that this measure still has some way to go, it is encouraging to see its advocacy in
the more recent undergraduate texts in design [112] and [103].

2.4 Uncertainty and Risk

In the absence of uncertainty, project selection reduces to a problem that consists of

1. Selecting the appropriate metrics to use to evaluate each project

2. Carrying out the evaluation itself for each metric

3. Combining the di↵erent scores in a way that can give a ranking among the
di↵erent projects

In the case of a single metric - say a financial objective for example as discussed
in the previous section - then that ranking is implicit in the scores assigned to each
project and the one that gives the highest score on the metric (i.e. that maximizes
the metric) is easily selected. Thus, for example, if we choose to rank projects based
on a financial metric, our first task will be to select an appropriate metric. If we
choose it to the be the Net Present Value (NPV), our next task will be carrying
out the evaluation on all the options. This is generally done using cost and revenue
models built for each option. Since it is a single objective, the final values of the
calculated NPVs gives a ranking of the projects and the one with the highest number
will be picked. If a multiple ranking measure was used - say we also considered
environmental safety - we would next either have to devise a means of combining
these di↵erent metrics into one or finding an alternative approach for using them to
somehow make a decision. We will discuss this idea of combination in more detail in
Chapter 5 of this thesis.

In the presence of uncertainty however, even for single metric choices like the
NPV, the matter becomes a bit more complicated because each project doesn’t give
a unique outcome that can be used to rank them. Instead, each project now yields
a distribution of possible outcomes/scores on the given metric - each of which can
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Figure 2-4: An illustrative example of the outcome of uncertain projects

be associated with a particular probability (or in the continuous case, a probability
density). An example of this is given in figure 2-4.

In this example, we assume the decision maker has to choose between three project
with di↵erent return profiles as shown in the diagram above. In this example, the
metric of choice has been fixed to the net present value (NPV). In the presence of
uncertainty, the projects, instead of giving a single output, now produce a distribution
of outcomes that is characterized by a probability density (in the continuous case
illustrated) or a probability mass function (in the discrete case). Given that each
project now gives a range/distribution of outcomes, the challenge in decision making
under uncertainty is determining how to select the “best” project from among the
potential choices. In the next section, we review some of the current methods in use
in resolving this problem.

2.5 Literature Review

We briefly examine current literature under these di↵erent groupings and highlight
show how they are used to make decisions under uncertainty.

2.5.1 Single Objectives

By far the most common approach to project selection in the presence of uncertainty
is ranking based on the expected value. The expected value of a uncertain quantity
is the probability weighted average of the outcomes. Mathematically, this is described
as:

E[X] =

Z 1

�1
xf(x)dx (2.5)
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for the continuous case and

E[X] =
NX

i=1

pixi (2.6)

for the discrete case. Thus to use the expected value to rank and select among the
distributions given, the value of E[X] is calculated for each of the projects and the
one that gives the highest value is selected.

The probabilistic objective is another single objective approach. Here, the
metric used is

C(X) = P (X  A) =

Z A

�1
F (x)dx (2.7)

where F (x) is the cumulative distribution and (come up with the discrete represen-
tation).

C(X) =
1

N

NX

i=1

1XA (2.8)

where the function 1XA represents the indicator function that takes on the value
of 1 when the expression X  A and 0 otherwise. This objective minimizes the
probability that the outcome of an event falls below some fixed number A. This
formulation of the objective was first introduced by Roy [96] and for constrained
optimization problems by Charnes and Cooper [24]. The value, A functions as a
parameter in this problem and will be investor dependent.

Yet another objective is the Worst-case/Robust Formulation. Here each un-
certain variable is characterized by its worst outcome and this outcome is used to
rank the outcomes. Mathematically, this is calculated as

W (X) = min
D

X (2.9)

where D is the support of the outcome X. This approach is used when X has a
finite support i.e. the set D is bounded. The robust formulation is one of the more
common engineering objectives and is used primarily in control applications as well
as design and a detailed reference for the approach is given in [14].

Finally, we have another metric introduced by Aseeri and Bagajewicz [8] called
the Risk Area Ratio (RAR) which is a ratio of the opportunity area to the risk
area. Figure 5-9 pictorially illustrates these concepts. The Opportunity Area (OA)
is defined as the area over which the cumulative distribution of the prospect, FX , is
above that of the project with the maximum NPV, FZ . The risk area is the area
over which the converse holds i.e. where FZ � FX . As we see, and unlike the other
objectives so far introduced, the RAR is benchmarked by the decision variable with
the highest expected value and is not a stand-alone objective. We calculate the RAR
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as follows:

RAR =
Opportunityarea

Riskarea
=

R1
�1  +

R1
�1  � (2.10)

where  + = max{FX � FZ , 0} (2.11)

and  � = max{FZ � FX , 0} (2.12)

2.5.2 Risk and Multiple objectives

Markowitz [68] rejected the claim that investors cared (or should care) only about
the expected return of a distribution (the principal approach used at the time) and
claimed that they should care about both its expected return as well as the variance
(or risk) and by doing so, they could make better investment decisions. Thus, he
ushered in the reward-risk framework for portfolio/project selection in the presence
of uncertainty, and his proposal was a simpler alternative to the expected utility
paradigm that was introduced by Bernoulli and axiomatized by Von Neumann and
Morgenstern [121].

The expected value of a distribution has long been the standard measure of reward.
Several risk measures however have however been used as a measure of risk to make
decisions. We list a few of them below:
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Variance

The variance of a distribution is the mean square deviation of the distribution from
its mean value. Mathematically, it is defined as

V ar(X) = E[(X � X̂)2] (2.13)

=

Z 1

�1
(x� x̂)2f(x)dx (2.14)

=
NX

i=1

pi(xi � x̂)2 (2.15)

where x̂ is the mean value of distribution and we have written out the form for
both the continuous and the discrete cases.

Semi-Variance/Semi-deviation

Markowitz [69] introduced the semi-variance as an alternative measure for risk because
it didn’t penalize upsides like the variance. Semi-variance is a type of the more
general semi-deviation measures where risk is measured primarily as falling below
some aspiration level. So for a general level, d, the semi-deviation function associated
with a random variable, X, is given as

r(X, c) =

(
(x� d) if x  d

0 if x � d
(2.16)

And with this, the mean square semi-deviation is defined as

SD =

8
><

>:

R1
�1 r2f(x)dx if X is continuous

1
N

PN
i=1 pir

2
i if X is discrete

(2.17)

When d is the expected value of the distribution, then we have it known as the
semi-variance.

Value-at-Risk (VaR)

Value-at-Risk (VaR) was proposed by Jorion [51] as a direct measure of risk. Value
at Risk is defined as the lowest amount, A, such that with probability beta, the loss
over a given period of time, does not exceed A. There are as such three elements to
uniquely specifying VaR for a distribution

1. A specified probability level, ↵

2. A loss amount, A

3. A time period
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Since we are currently dealing with single-stage decision making, the last element
doesn’t matter (single period) and as such the VaR is mathematically defined as

↵V aR = inf
A2R

{P (X � A)}  ↵ (2.18)

where X is the loss amount. Because, in this study, we generally think of X as a
profit like variable i.e. a variable where we want positive values and dislike negative
values, then we redefine the VaR to reflect this (Krokhmal et at. (2010)) as

↵V aR = � inf
A2R

{P (X  A)} � ↵ = �F�1
X (↵) (2.19)

where F�1
X (↵) is the inverse of the cumulative distribution of X. Note that in relation

to the probability level,↵, the relation ’>’ was used instead of ’�’. Defined this way,
we have the definition of VaR expressed in terms of the cumulative distribution as the
↵-quantile. Another expression of VaR is sometimes used, one defined as the ’lower’
↵-quantile (Krokhmal et al (2010)) and it is given as

↵V aR� = � inf
A2R

{P (X  A)} � ↵ = �F�1(X,↵) (2.20)

where the expression F�1(X,↵) is defined as

F�1(X,↵) = inf{⌘|P (X  ⌘)} � ↵ (2.21)

Conditional Value at Risk (CVaR)

The Conditional Value-at-Risk can be defined as the expected value of the random
variable conditioned on it being larger than the value at risk i.e.

↵CV aR(X) = ↵CV aR�(X) = �E[X|X  �↵V aR(X)] (2.22)

Slightly di↵erent to the Value-at-Risk metric, we have another definition of the
conditional value-at-risk and it is the ‘upper’ CVaR, ↵CV aR+(X) given by the fol-
lowing equation

↵CV aR+(X) = �E[X|X < �↵V aR(X)] (2.23)

where the di↵erence is in the conditional relation of X with �↵V aR(X) whether
‘<0 or ‘’.

Krokhmal et al (2010) reference also other definitions of CVaR - one given by
Rockefellar and Uryasev [92] as

CV aR↵(X) = �↵(X)V aR↵(X) + (1� �↵(X))E[X|X < �↵V aR(X)] (2.24)

with �↵(X) defined as

�↵(X) = (1� ↵)�1FX(�V aR↵(X)) (2.25)
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and another by Acerbi (2002) as

CV aR↵(X) =
1

↵

Z ↵

0

V aR�(X)d� (2.26)

where we have redefined ↵V aR(X) as V ar↵(X) to make the equations above more
readable.

2.5.3 Multiple objectives and Dominance

With single objectives, the scores assigned to the di↵erent projects also serve as a basis
for ranking and selection. For example, with an expected value metric, the project
with the highest expected value (when scoring is done such that higher outcomes
correspond to increased preference) is selected. With the Risk-Area ratio on the
other hand, lower values correspond to more preferred outcomes so the project that
gives the smallest value will end up being picked.

With the reward-risk framework, it is no longer as simple as we get a vector of
scores which cannot be usually be ranked as easily.

Example 2 As an illustration, imagine we have a set of projects that yield the
following scores for two di↵erent metrics: [3,4], [0,5], [1, 1], [4, 2] and [2, 2]. We
tabulate the scores on both metrics in Table 2.1. We assume the two metrics to be
’postive’ metrics - meaning that higher scores on each metric are desired. With a risk
metric (where lower scores would be favoured), this can easily be rectified by taking
the negative.

Project Metric 1 Metric 2 Rank, Metric 1 Rank Metric 2

A 3 4 Second Second
B 0 5 Fifth First
C 1 1 Fourth Fifth
D 4 2 First Third
E 2 2 Third Third

Table 2.1: Scores on di↵erent metrics for di↵erent projects

As the table shows, the rankings of the projects depends on the metric of choice.
Project B, for example, ranks first on Metric 2 but fifth on metric 1 and project D
ranks first on metric 1 and third on Metric 2. Thus if we compare project B and D, we
can’t say which is unilaterally superior as, depending on the strength of preference for
metric 1 or metric 2, a decision maker may choose one or the other. B and D will then
be said to be in the same e�ciency set - the set for which no option is unilaterally
superior to another. However, if you compare project A and C for example, for both
metrics, project A is superior to project C as it scores higher on either metric. In this
case we can say that A is unilaterally superior to C as every decision maker when
presented with A or C, so long as they desire more to less of both metrics, will pick
A. In this case, project A is said to dominate project C.
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E�ciency and domination are the rules used to classify projects when multiple
objectives are involved and nothing else is known about the relative preference be-
tween metrics for decision makers. They are also called Pareto e�ciency and Pareto
dominance, after Vilfredo Pareto, an Italian economist who used the idea in his stud-
ies of economic e�ciency and income distribution (cite Pareto E�ciency Wikipedia
Article).

Keeney and Rai↵a (1976) more formally define dominance as follows: for a pair
of projects F and G with components fi and gi for i = 1 to N metrics, F dominates
G whenever

fi � gi, 8i (2.27)

fi > gi, for some i (2.28)

2.5.4 Illustrative Example

We demonstrate the concepts that we have been discussing so far with an example
problem. Assuming the firm is faced with 6 investment opportunities illustrated in
Figure 2-6. To simplify analysis, we assume that each project costs the same to
implement so there are no extra constraints to consider. To aid comparison, we
also plot the distribution of all the projects together in Figure ??. The projects are
identified by numbers 1 - 6 with project 1 being topmost left and 6 bottom right. We
count across and down. The distributions corresponding to the projects are given in
Table 2.21

Project Distribution Type Parameters

1 Normal µ = 600, � = 200
2 Normal µ = 300, � = 150
3 Mixed Normal µ1 = 500, �1 = 40 µ2 = 200, �2 = 120
4 Mixed Normal µ1 = 850, �1 = 40 µ2 = 150, �2 = 200
5 Uniform a = -200, b = 1000
6 Lognormal µ = 600, � = 200

Table 2.2: Information on project distributions in illustrative example

For the single objective functions discussed earlier, Table 2.3 shows the ranking
given to the set of projects by the each objective. For each case, we assume that the
project with the highest selected value will be chosen.

For the multi-objective functions discussed, we split the projects into e�cient and
dominated sets and the table below indicates the assignment for each of the objectives
discussed.

The value-at-risk and the conditional-value-at-risk were both set at values of ↵ of
0.1. As we see from the table, the decisions for the three objectives are all di↵erent

1Mixed normals represent a probabilistic mixing of two normal distributions in order to yield a
multi-modal distribution. To generate samples, a sample is drawn from one distribution according
to a given probability and from the other in the complementary case
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Figure 2-6: Projects Options for Example. Project 1 is topmost left, 2 is topmost
right, 3 is middle left, 4 is middle right, 5 is bottom left and 6 is bottom right
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Objective Function Selected Project

Expected Value 1
Worst-Case 6

RAR 4

Table 2.3: Project selections with the di↵erent single objectives

Performance Measure Risk Measure E�cient Set

Mean Variance 1, 2, 3
Mean SemiVariance 1, 2, 3, 6
Mean Value-at-Risk 1
Mean Conditional VaR 1

Table 2.4: Project Rankings with the di↵erent Single objectives

and the e�cient sets of the multiple decisions are also di↵erent. As a result there
are decisions that will be either be omitted from the choice set of the decision maker
or will contain decisions that wouldn’t be picked by him, resulting in an ine�cient
screening process.

2.6 Issues with current approaches

We briefly review below the main drawbacks of many of the methods we just outlined.

Expected value maximization does not lead to diversified portfolios [96] - unless
of course, there are non-linear interactions in project choices. For linear and indepen-
dent investments, only the project with the maximum expected value will be chosen.
An intuitive reason for this can be seen from Gilboa’s description [37] of expected
value as a certainty generator. In the infinite limit, the expected value is certain
(has zero variance) and as such the expected value problem is, in e↵ect, transformed
to a deterministic one - and diversification is not optimal in such problems 2. The
only time an appearance of diversification can be obtained is if there are budget con-
straints on the each investment option, independent of the total available budget.
In that case, the investments will take place in a rank order from highest to lowest
investment until the budget is exhausted. However, arbitrary caps on projects lead
to suboptimal solutions from the optimality principle [11].

The Worst-case approach su↵ers primarily from being too conservative as it
implies that no matter how good an alternative looks, it can be discarded on the
basis of one really bad outcome - regardless of how improbable that outcome is. It is
rarely ever used for financial evaluations though it can be used to identify potential
arbitrage opportunities

2In the actual deterministic case, the future is known for certain and so the optimal decision will
be to invest all resources in the project that gives the highest returns per dollar
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The Risk Area Ratio fails the Expected Utility analysis demonstrated in a
later chapter. Basically, under certain conditions, it can be shown to choose projects
that are universally determined to be inferior to others in the same pool. Our new
framework - stochastic dominance - is able to identify such projects and is also able
to vet the performance of other metrics too.

TheMean-Variancemodel selects alternatives based on, as the name implies, the
mean and variance of the decision outcomes. The goal will be to maximize the mean
and minimize the variance of the alternative. These are two independent objectives
and as a result, rather than a single solution value, a set of values that make up a
frontier can be optimal depending on the trade-o↵ between the objectives that the
decision maker is willing to tolerate.

Weisman and Holzman [123] show that mean-variance is equivalent to EU theory
when the utility function is either quadratic or the uncertainties follow the normal
distribution (it might be interesting to illustrate the results here with equations). We
reproduce their derivation below Typically we begin by assuming that the decision
maker is risk-averse everywhere i.e. the second derivative of the utility function is
always negative (Keeney, 1976). This type of utility function can be parameterized
by the function.

Semi-variance su↵ers from the setback that it is more di�cult to handle than
variance [12] although algorithms exist for determining the e�cient frontier under
this metric ([12] [45]). Under symmetric conditions however, Markowitz [69] shows
that it yields the same results as the traditional mean-variance approach.

Value-at-Risk is a risk measure used in the banking industry today widely pop-
ular because of its simple yet intuitive meaning. However, Artzner et al. [7] demon-
strate that it lacks coherence as a risk measure - in particular, under certain condi-
tions, it fails to encourage diversification as an approach to reducing risk. Also, it
doesn’t give an idea of how much stands to be lost. So a 2week, 5% VAR of $1million
says that over a two-week period, the company has a probability of 5% of losing a
million dollars or more. Depending on the tail of the distribution, this could be as
large as a billion dollars for example - enough to possibly wipe the firm out. As a
result, it should be used with caution.

Conditional Value-at-Risk The conditional value at risk is a consistent risk
measure [97], [7] and has only relatively recently begun to enter the main stream of
risk [91] even though it has been around for a while (see [33]). It improves over the
value-at-risk framework in two ways - it doesn’t just give a lower bound for risk as it
also gives an expectation of the loss that can potentially be incurred. It also satisfies
portfolio diversification requirements.

2.7 Applications of Selection Objectives in Engi-
neering

Mulvey et al.[77] introduced Robust Stochastic Programming in an attempt to ac-
count for the riskiness of alternatives. They use variance as a surrogate measure of
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risk and attempt a multi-objective approach of maximizing mean and minimizing the
variance of the return. While this improves over the pure expected value, it penal-
izes both upside and downside deviations symmetrically whereas investors only care
predominantly about downside variance.

Cheng et al. [25] propose multi-objective, two-stage approach to the design prob-
lem in a dynamic programming framework for the analysis of the design of a reactor
with the possibility of the appearance of superior technology in the horizon. They
select three metrics - expected profit, downside risk and process lifetime - as a ba-
sis for evaluating their decision and develop a multi-objective dynamic programming
framework to solve the problem. They do not however expand in much detail the
basis of selection of their choice of risk metric. The compare their solution with the
pure expected value formulation but do not examine di↵erent formulations of risk to
see how their decisions change with them.

Aseeri and Bagajewicz [8] propose a new metric - the risk area ratio in an aim to
move from the point-like measures that characterize metrics like mean, variance etc,
to one which aims to capture information on the distribution as a whole. This ratio
is however flawed from a preference perspective and it will be illustrated in detail
in a later chapter. They however do a good job of reviewing other metrics (VaR,
CVaR, mean-variance, etc) and the fact that their approach begins to consider ways
to utilize the entire distribution as a basis for decision making is a step in the right
direction.

In the Chemical Engineering process design literature, Turton, Bailie et al. [112]
were the first proponents of the stochastic dominance approach to selecting projects in
the presence of uncertainty. Stochastic dominance is a distribution free approach and
relies on very broad and general assumptions about the utility functions of the decision
maker. However, they don’t discuss the use of stochastic dominance for decisions with
continuous components as one can only make comparisons across discrete choices of
projects.

Most of the articles reviewed above have focused primarily on the design of a sin-
gle project and on ways to manage risk within such a project. Very few have focused
on design/project selection as one that needs to be done at a portfolio level. This is
important because diversification of investments has been long recognized as a way of
reducing and managing risks [68]. Sometimes this is done in an arbitrary fashion us-
ing artificial budget caps and constraints - where predetermined levels of investments
across di↵erent projects are arbitrarily decided. While this can indeed provide some
level of diversification, it is not guaranteed to be optimal. By using a more quan-
titative/objective portfolio based analysis, an optimal allocation of resources that
maximizes return and minimizes risk can be obtained.

Rogers et al. [93] are an exception however as they o↵er one of the more compre-
hensive approaches in the process engineering literature. In addition to considering
an options-based approach to value the pharmaceutical investments, they also embed
this in a portfolio framework where they recognize that real project decisions should
be carried out in the context of assembling an investment portfolio from the perspec-
tive of the company. Again however, behavioural assumptions are not discussed and
variance is assumed to be a su�cient measure of risk without any discussion of the
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basis upon which the metrics lie.

2.8 Elements of the decision problem

In examining the design/selection problem so far, we have explicitly assumed that
we have a number of things that make it possible to carry out the analysis. Some of
these we need from the decision maker and others from the designer. We highlight
and briefly discuss them below.

From the decision maker and stakeholders we need:

1. Metrics for evaluation such as whether to use net present value, internal rate of
return, or a number of other di↵erent metrics. As discussed in the first section of
this chapter, this choice also has the potential to significantly a↵ect the project
decision, even in the absence of uncertainty and should be examined in detail

2. Constraints such as environmental and safety regulations, budgetary restric-
tions, strategic investments direction of the firm towards a particular industry,
constraints and budgetary constraints play a huge role in the determination of
feasible designs and often time

3. A description/knowledge of their general risk preferences/attitudes

From the design engineer, we expect

1. Mathematical/simulation models for the project options which translate input
decisions to output desirables

2. A framework for the representation and propagation of uncertainty through the
generated models

3. The ability to model the preferences of the decision maker in a manner that
generates a usable objective function or provides a rule for refining the feasible
setto appropriately use for project selection

The ability to solve the decision problem relies on the intersection of both groups
of expectations and sometimes, it is information that is iteratively communicated and
used to solve each problem.

In subsequent chapters, we will examine some of the elements highlighted above
in greater detail. The next chapter examines ways in which uncertainty is quantified
(modelled and propagated) in process systems. We utilize the probabilistic framework
because it is the most widely used approach for representing uncertainty. Uncertainty
propagation characterizes the uncertainty in the output from a model given knowledge
of the structure of the model and the form of the input uncertainties. Once we are
able to quantify uncertainty in the di↵erent projects, we are able to run some of the
analysis that we reviewed earlier in this chapter.

To analyze and incorporate preference, we use utility theory as the framework for
representation, culminating with the development of expected utility as the prescrip-
tive approach for to decision making under uncertainty within utility theory.
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Chapter 3

Uncertainty Analysis

The presence of uncertainty in project outcomes plays a huge role in shaping how
projects are ultimately selected. However it is often impossible to tell, a priori, the
uncertainty in project outcomes as all we often possess is the knowledge of the input
uncertainties as well as a model of the project that links the inputs to the outputs.
In order to determine output uncertainties, we need to be able to:

1. Adequately model the uncertainties in a form that makes them amenable to
analysis

2. E�ciently propagate the input uncertainties through the models in order to
determine the output uncertainty

3. Quantify the e↵ect of each uncertain input on the output uncertainty via a
sensitivity study

While the last point is not necessary for uncertainty propagation, it is very useful
in outlining steps to embark upon after analyzing the decision problem and help
improve the next round of decision-making. In this chapter, we discuss the three
objectives in greater detail. First, we highlight examples of the di↵erent frameworks

Figure 3-1: An illustration of uncertainty analysis
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for modelling uncertianty, but focus primarily on the use of probability theory since
it is the most widespread framework in use.

The second part of the chapter gives an overview of the di↵erent methods of
propagating uncertainty through models - via monte-carlo methods and the more
advanced polynomial chaos expansion approach (insert reference). Advantages and
disadvantages of both approaches are highlighted and a simple guide for when to use
one or the other provided.

Uncertainty analysis is usually restricted to mean the first two objectives but in
this thesis we expand it to include the third objective, traditionally referred to as
sensitivity analysis. Knowledge of sensitivites is important for action - we can use
this in an experimental design to figure out the variable to study that gives us the
best ’bang for our buck’ in reducing the uncertainty in the output.

3.1 Introduction

Process design is carried out under an uncertain environment and the ability to ef-
fectively handle the presence of uncertainty in process design is the biggest challenge
that the field faces today. The uncertainty arises from sources internal and external to
the process. Examples of internal uncertainties are technological performance param-
eters (e.g. reaction rate constants), and external uncertainties include raw material
yields, prices, market sizes for products, regulations etc.

The traditional way uncertainty was handled in process design included using nom-
inal values for the uncertain variables and then using a (local) sensitivity analysis to
check for optimality. While this represents an improvement over the deterministic
case, it still fails to capture the full range of outcomes that decision-makers are ex-
posed to when they need to make decisions. The goal of uncertainty modelling and
propagation is to quantify the e↵ects of the uncertainties in the di↵erent inputs of a
process or a system on its output(s) and to determine the key drivers of the output
uncertainty where possible.

Uncertainty is often classified into two major types - epistemic and aleatory un-
certainty [82]. Epistemic uncertainty refers to the types of uncertainties where it is
possible for us to ultimately know the true values either through increased observa-
tions or through the use of more accurate measuring tools. Physical constants such
as the acceleration due to gravity, the speed of light in a vacuum, etc all fall under
this category. Aleatory uncertainties on the other hand are those that arise from un-
derlying random processes and whose uncertainties cannot be reduced by increased
observations. These variables are truly random and the best that can be done is the
knowledge of the particular random process that describes the behaviour of such an
uncertain variable. Examples of such are the positions of subatomic particles, the
behaviour of stock prices, etc.

There is sometimes some overlap between the two types of uncertainties. Take, for
example, the modelling of the behaviour of stock prices. Assuming we believe that we
can model it via a Weiner process, then, the problem typically becomes one of trying
to determine the appropriate parameters that describe the distribution. With more
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historical data we may believe we can more likely converge on the exact parameters
that describe the distribution, even though the underlying variable remains truly
random. Knowing which kind of uncertainty we are dealing with is quite important
as it can help inform our actions for dealing with the uncertainty. Where epistemic, it
may be worth experimenting to know the true value of the parameter, thus eliminating
the source of the uncertainty, whereas, with aleatory uncertainties, we are, at best,
only able to eliminate the e↵ects of uncertainty via the use of contingency plans

Within mathematical models, uncertainty is often also divided into two areas -
parametric uncertainty and structural uncertainty. Parametric uncertainty refers to
the lack of knowledge of particular parameters that are used within a model. Take
for example, the rate of the chemical reaction described below:

A �! B (3.1)

rA =
dCA

dt
= k1CA (3.2)

In the above, we have assumed the reaction proceeds via a first order mechanism.
The parameter to be determined is the reaction rate constant, k1. This parameter
is unknown and often has to be determined from experiments which usually involve
running the reaction over a period of time, determining the concentration of reactant,
A, at intervals and then fitting the first order curve to the data to determine the
rate constant. Since there will be errors in measurement (due to a host of reasons),
there will be a corresponding uncertainty in the value of this determined parameter.
This uncertainty is the parametric uncertainty. Structural uncertainty however refers
to the uncertainty regarding the specific form the mathematical model takes. For
example, we could also have hypothesized that the reaction proceeded via a second
order mechanism, leading to the reaction

rA = k2C
2
A (3.3)

In this case, when trying to determine the parameter k2 from the experiments, the
results will likely be quite di↵erent. Given that the parameters for these models are
obtained with measurements that assume one model over the other, model uncertainty
certainly influences the parametric uncertainty. Model uncertainty is particularly
important in the area of model selection and discrimination. While in this thesis, our
particular focus will be on parametric uncertainty, interested readers are referred to
[15] for a more in-depth analysis of model uncertainty in process design.

To handle uncertainty, one is in need of two things - a mathematical framework
that can be used to represent it and an e�cient way to use this representation in
computations required for making design decisions. We discuss these in the sub-
sections below.
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3.2 Uncertainty Modelling

In order to incorporate uncertainty in the design and selection process, we need a
mathematical framework for modelling and representing it. Tatang [108] outlines
four frameworks for representing uncertainty and they are listed below (you can try
to find another reference if that works better)

• Interval arithmetic

• Fuzzy theory

• Demnpster Schafer theory

• Probabiity theory

While he discusses the pros and cons and field of applicability of the di↵erent
approaches, he ultimately concludes that probability theory is the most widespread
and most theoretically developed framework for modelling uncertainty and that is
the framework we will be utilizing in this thesis. Interested readers in the other
frameworks are referred to his thesis work [108] and related references.

In addition to a theoretical framework, we need to a model that describes the
way the particular uncertainties that we are concerned with vary. In probability
theory, this model is the probability distribution and it can be one of many forms e.g.
uniform, normal, exponential etc. Knowledge of the underlying generating process
for the random variable can suggest a particular form for the uncertainty.

Often times, we know some statistics of the underlying variable like its mean,
variance, range, mode etc. Information theory can be used to suggest models that
minimize the extra amount of information that the model adds to what we know. For
example, given knowledge of the mean and the variance of a random variable, the
Gaussian is the distribution that adds the least amount of extra information to what
we already know. The principle of maximizing entropy is the mathematical backbone
for the determining such distributions and it is elaborated on in [49] and [27].

Figure 3-2 from Gong [38] summarizes the maximum entropy distributions that
arise from di↵erent scenarios of available information.

3.3 Uncertainty Propagation

Besides modelling uncertainty, one also needs to be able to propagate it through the
process system. This is necessary in order to quantify the overall uncertainty in the
outputs as a function of the inputs.

Monte-Carlo methods are currently the simplest and most widespread means for
propagating uncertainty through models today. These methods were invented in the
1940s by Metropolis and Ulam during the Manhattan project for the development of
the atomic bomb. It was named after the Monte Carlo region in France, which was
a popular gambling destination The basic principles behind the method are:

1. The selection of random samples from the probability distributions of the inputs
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Figure 3-2: Distributions corresponding to the respective available information via
the principle of maximum entropy. From [38].

2. The deterministic solution of the model to obtain the process outputs and

3. The eventual aggregation of the outputs into a histogram to get the output
distribution

Selection of random samples from the probability distribution can be done with the
use of appropriate pseudo-random number generators. Standard numerical methods
for solving systems of equations are then used to generate model outputs from the
inputs and these can be made into a histogram using appropriately sized bins to
collect the outputs.

Monte-Carlo methods were initially developed to solve deterministic problems like
determining the expectation of a function where the analytical calculations would
have proved to be intractable. The advantages of the Monte-Carlo method are that
it is very easy to use and as more and more samples are taken, convergence to the
”true” output distribution is guaranteed [47]. Its biggest disadvantage however is
that the rate of convergence is quite slow and typically many samples are required
to typically improve the convergence of the output to desired levels. Regardless of
the dimension of the problem, Monte-Carlo converges at a rate of N�1/2 where N is
the number of samples. Thus to reduce the error of a monte-carlo estimate by half,
one needs to quadruple the number of samples and to improve the accuracy of an
estimate by 1 decimal place, you need to take a hundred times more samples - hence
its computational intensity.
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Figure 3-3: Illustration of monte-carlo convergence for the example. The figure on
the left shows how the mean converges to the value of 5 while that on the right shows
the convergence of the estimate

Example We illustrate the convergence above with an example where we try to
estimate the mean and standard deviation of a normal random variable whose mean
and standard deviation we know to be 5 and 2 respectively using a range of sample
sizes from 100 to 1 million. For each sample size, we estimate the mean of the samples
taken. This is a sample mean for the particular sample size. We repeat this 100 times
in order to get a 100 sample means for the particular sample size. We can now use this
to determine the mean and standard deviation of the sampling distribution for each
sample size. The standard deviation of each sampling distribution is the standard
error. We then plot standard error against the number of samples and confirm the
convergence relationship. We plot the means of the distributions also to display the
convergence to the true value of 5 as we increase the number of samples.

In an attempt to improve the convergence of the Monte-Carlo method, better
sampling techniques have been developed - techniques like the Latin Hypercube sam-
pling, importance sampling, control variates etc. The overarching theme behind these
techniques is to use our knowledge of the uncertain variable to spread out the samples
so that fewer samples are used to obtain the same distribution. The trade-o↵ imposed
by these methods is the increasing complexity of both the implementation and the
analysis of the resulting statistics. In a number of cases this trade-o↵ is often worth
it - although we will be using simple monte-carlo for uncertainty propagation in this
work.

3.4 Sensitivity Analysis

Sometimes, all we need to know for deciding on the project to implement is the
knowledge of the output uncertainty as a function of the inputs and the parameters.
With this knowledge, many of the techniques reviewed in the previous chapter are
able to select promising projects from among a group of candidates and eliminate
those that are outside the preference of the decision maker.
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However, in some cases, we need to know which of the uncertain inputs have the
greatest e↵ect on the output with the goal to possibly reduce the e↵ect that such
an input has. And in the case where this uncertain input a↵ects all the projects,
reducing its e↵ect may help to better discriminate between good and bad projects.
The process of decomposing output uncertainty into the respective contributions of
the di↵erent inputs is the goal of sensitivity analysis. Sensitivity analysis is often
categorized into one of two di↵erent groups

1. Local sensitivity analysis where the e↵ects of small pertubations of the inputs
around the nominal/design points are used to determine the contribution

2. Global sensitivity analysis where the e↵ects of variaton of the input on the
output over the whole range of the input space is used

We review the di↵erent techniques for both local and global senstivity analysis
below with our primary references being the review text by Saltelli et al [99] and
[100] where more detailed references on the di↵erent methods can also be obtained.

3.4.1 Local Sensitivity Analysis

Local sensitivity analysis easily traces its roots to the deterministic approaches to
modelling, where the earliest means of determining the e↵ect of slightly varying the
input on the output could be determined from the derivative of the output function
wrt the input i.e.

Si =
dy

dxi x=x0

(3.4)

where Si is the local sensitivity, y the output and xi the particular input variable
and x0 is the nominal value of the parameter (note that when derivatives are taken,
unless otherwise stated, we will assume that they are taken at the nominal value, x0).
This technique works quite well when the variables are all within the same order of
magnitude and have the same degree of dispersion. When the scale of variation is
large enough, it is often good to normalize the sensitivity analysis, which gives

Si =
xi0

y0

dy

dxi
(3.5)

so that in this case all the sensitivities are now dimensionless and roughly within
the same range of order of magnitude. If the degree of dispersion of the di↵erent
input vary considerably, it is also important to account for this in determining the
sensitivity as given in [100] this way

Si =
�xi

�y

dy

dxi
(3.6)

where � corresponds to the standard deviations of the di↵erent subscripts. For very
simple models, the derivatives can be obtained analytically while for more complex
models (and for black-box type models where the model structure is not observable
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to the user), numerical simulations are needed to compute the derivatives with dif-
ferent techiques available depending on the accuracy needed and the complexity of
evaluations and such techniques are discussed in [23].

Local senstivity analysis is often done via a ’one-at-a-time’ approach, where in-
teraction e↵ects are neglected and the e↵ect of varying only the input of interest on
the output is accounted for. Where the models are linear and interaction terms are
negligible, the approaches we have considered are su�cient for determining sensitiv-
ities. Where this isn’t the case, a global approach to sensitivity analsysi is required
and this is discussed next.

3.4.2 Global Sensitivity Analysis

Local sensitivity analysis is plagued by a number of factors, notably the inability to
include some measure of interaction of the variable of interest with other variables in
the determination of sensitivities and the fact, not highlighted in great detail, that
the sensitivity computed can be a function of the nominal values used to evaluate the
derivative.

Global sensitivity measures (or indices) usually correct for these as they are able
to account for interaction and are a measure of the interaction over the entire space of
the variable of concern. Di↵erent techniques exist for the evaluation of global sensitiv-
ities. Examples include Fourier Amplitude Sensitivity Testing [101] [75], polynomial
chaos expansions [106], regression based approaches approaches [100] and monte carlo
methods [98] [101]. While we will be using the monte-carlo based methods largely
because of ease of implementation and how it naturally fits into the uncertainty prop-
agation techniques we are already other methods should be evaluated for situations
where they might be more advantageous. We expand on the method below, the
discussion largely adapted from [98] and [100].

Saltelli [98] introduced Monte-Carlo based approaches for evaluating Sobol’s in-
dices and the ability to minimize computational requirements of the test and to use
analysis to get a sense of the total e↵ects, even when single e↵ects cannot be deter-
mined. The strength of the di↵erence between first order and the total sensitivity
analyses gives a measure of the degree of importance that can be attached to inter-
action e↵ects.

The approach generates both first order sensitivities, which we represent like the
others as Si and total e↵ect sensitivities, ST

i which accounts for all the interactions.
Both first order and total e↵ect sensitivities are calculated by Monte-Carlo sampling.
We assume that we have a model given by

Y = f(x1, x2, ..., xN) = f(x) (3.7)

where Y represents the output of the model and x the vector of inputs. In this
approach, the first order sensitivity Si is defined as

Si =
V (E(y|xj))

V (y)
(3.8)
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where V (E(y|xj)) is the variance of the expected value of the output (y) when
the factor xj is kept fixed. The total sensitivity, ST

i is defined as the

ST
i =

V (Y )� V (E(y|x�j))

V (Y )
(3.9)

where x�j is shorthand notation for all other variables apart from xj. ST
i can also be

described (see[106]) as the sum of the sensitivities of all the terms in f(x1, x2, ..., xN)
that doesn’t involve variable xi, i.e.

ST
i = 1� Sĩ (3.10)

where the index ĩ represents stands for all variables except i. In order to calculate
each of these parameters, we will first have to generate samples of the input variable.
We generate matrices M1 and M2 where we define the ith row of M1 as

M1 = x1, x2, ..., xj, xj+1, ..., xN (3.11)

which is a sample from the joint distribution of all the inputs (which is, for in-
dependent random variables, just a collection of samples from each of the individual
distributions). In the same manner, the matrix M2 contains a resampling of the
variables in matrix M1 i.e. the ith row of matrix M1 contains samples

M2 = x0
1, x

0
2, ..., x

0
j, x

0
j+1, ..., x

0
N (3.12)

where the apostrophes are to indicate the resampled values of the variables sampled
in M1. The value of the first order and total sensitivity indices can be calculated as
follows:

Si =
Uj � E2(Y )

V (Y )
(3.13)

where the Uj is defined as

Uj =

Z
E2(y|xj = x̃j)pj(x̃j)dx̃j (3.14)

where pj(xj) is the probability measure (or probability density function) of the
variable xj and E2 refers to the square of the expected value of the variable. Since
most times we can’t compute this analytically, a simulation based approach is used
to calculate Uj which is

Uj =
1

Nsim� 1

NsimX

r=1

f(xr1, xr2, ..., xrN)f(x
0
r1, x

0
r2, ..., x

0
r(j+1), , xrj, x

0
r(j+1), ..., x

0
N)

(3.15)
The above equation refers to resampling all the variables except xj and then

evaluating the function at those values. In relation to the earlier matrices M1 and
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M2, we simply create a new matrix Nj where we replace the jth column of matrix
M2 with the column from M1 and evaluate the function with those values. Once
this has been done, we can then proceed to calculate the value of the first order
sensitivities. For purely additive models,

PN
i=1 Si = 1 thus giving a clear picture of

the contributions of the first order indices to the overall variance.
To compute the total sensitivity indices, we use the equation

ST
i = 1� U�j � E2(Y )

V (Y )
(3.16)

where the quantity U�j is estimated via the following equation

U�j =
1

Nsim � 1

NsimX

r=1

f(xr1, xr2, ..., xrNf(xr1, xr2, ..., xr(j�1), x
0
rj, xr(j+1), ..., xN)

(3.17)
where, rather than resample everything, we resample only the value of xj. Unlike

the first order indices, the total sensitivity indices do not need to sum to 1 unless
there are no interaction terms, in which case, the values will be identical to the first
order indices. As mentioned earlier, the total sensitivity index has included in it, all
the interaction terms for variable xj. Thus for a model with three inputs, the total
sensitivity index for input 1 will be the sum of the following

ST
1 = S1 + S1,2 + S1,3 + S1,2,3 (3.18)

where Si,... represents the contributions of the interaction terms of input i and the
other inputs.

Since the sensitivity indices are determined via random sampling, they are them-
selves random variables and will have errors associated with their estimation similar
to the convergence errors for Monte-Carlo estimation discussed earlier. Homma and
Saltelli [46] discuss the quantification of these errors and interested readers should
consult it for more detail.

We will implement the sensitivity studies in the case studies we will examine in
the later chapters of the thesis as they will inform which inputs to more specifically
focus on in the analysis of the di↵erent projects.
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Chapter 4

Preferences, Utility and Expected
Utility Theory

In many firms, the design process often doesn’t include the decision maker at the
base-level of analysis where preferences need to be included. For example, in selecting
projects for investment, the structure of most decision processes look more like that
in Figure 4-1.

In general, the decision makers set the strategic direction and other ‘system’ vari-
ables within which the eventual design engineers operate and they make the final
project and investment decisions based upon the recommendations of the engineers.
Supervisors set specific goals and benchmarks for the design team and report specific
options for consideration to the decision makers. The design engineers get goals and
targets from the team leads and make details designs which are passed back to the
team leaders for recommendations to the ultimate decision makers.

It is the preferences of the ultimate decision-makers that we want to make sure
are adequately reflected in the methodology used for screening among the numerous
design options that the engineers and designers have to analyze. This is because, the
decision maker rarely gets to see the universe of feasible options and if an incorrect
screening approach has been used to select the final (set of) project(s) presented
to them, it is possible that better projects could either have been screened out of
consideration or drowned out by the presence of far too many decisions in the set.

This thesis proposes that better decisions can be made by accurately and trans-
parently incorporating the preferences of decision-makers into the project selection
process. But we have yet to define what these preferences are and how we can rep-
resent and incorporate them into the decision-making process. Also, in order to be
objective in our comparison of alternative approaches to project selection, we need
a basis of evaluation that is consistent in our representation of these preferences.
We turn to utility and expected utility theory as they provide a su�ciently general
framework for addressing these questions.
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Figure 4-1: Supervision and Information flow during design

4.1 Introduction and History

Uncertainty and the need for making sound decisions in the presence of it has been
a key part of human history and most societies have sayings that illustrate some of
the accumulated wisdom of how to go about making such decisions1. However, it
was not until the 17th century that the first steps at establishing prescriptive models
for making decisions in the presence of quantifiable uncertainty began. The first
model, proposed by Blaise Pascal, was that of making decisions that maximized the
expected value of the decision outcome under the di↵erent possible states of nature
- the expected value being a probability weighted average of the di↵erent outcomes
for each decision.

Thus if a person is confronted with two or more options2 with di↵erent outcomes,
he simply calculated the expected value for each option given his knowledge of the
outcomes and picked the one with the highest value. Thus for three options described
in Table 4.1, the decision with the larger expected value is Y and is the decision that
will be recommended under the expected value metric.

Note that we assumed that the states of nature have equal probabilities but it
doesn’t always have to be the case, the di↵erent probabilities can easily be accounted
for in the calculation of the expected values in the general equation

1King Solomon advised to ”‘Sow your seed in the morning and at evening let not your hands be
idle, for you do not know which will succeed, whether this or that or whether both will do equally
well”’ (Ecc. 11:6) [10]. There is also the old English saying, ”‘Don’t put all your eggs in one basket”’,
both of which are pieces of advice to hedge against uncertainty in the future

2Historically, these options were modelled as lotteries since most of these theories were devised
around gambling
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State of Nature Project X Project Y Project Z
1 2 5 7
2 4 8 4
3 6 12 9
4 8 20 12

EV = 5 11.25 8

Table 4.1: Outcomes for three di↵erent lotteries under di↵erent states of nature

EV =
NX

k=1

pkxk (4.1)

where pk is the probability of state k and xk its outcome. For projects with a
continuous distribution of states and outcomes, we have that EV is obtained as

EV =

Z 1

�1
xf(x)dx (4.2)

where f(x) is the probability density function of the distribution.
Daniel Bernoulli, in the 18th century demonstrated a major flaw with the ex-

pected value approach to decision making using a now famous example known as the
St. Petersburg Paradox decribed by Wakker [122] below:

‘Consider the following game: A fair coin will be flipped until the first heads shows
up. If heads shows up at the kth flip, then you will receive $2k. Thus immediate heads
gives only $2 and after each tails, the amount doubles. After 19 tails, you are sure to
be a millionaire. Think for yourself how much it would be worth to you to play this
game’.

We can use the expected value approach of Pascal since we know the probabilities
and the value of the outcome and follow Wakker’s analysis of the problem. The
expected value of the lottery is

EV =
1

2
⇥ 2 +

1

4
⇥ 4 +

1

8
⇥ 8 +

1

16
⇥ 16 + ...

=
1X

k=1

2�k.2k

= 1 (4.3)

Thus the expected value of this lottery is infinite and should be worth more than
everything you own to play it. Bernoulli, however, realized that though this was
the case, the man in the street wouldn’t pay more than the equivalent of $4 to play
the game. This led him to formulate the concept of utility, the expected value of
which people were maximizing, rather than the specific returns. By assuming that
the utility to the person of the outcome was the natural logarithm of the returns
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rather than the actual monetary value, he was able to derive the value of the lottery
as

EU =
1X

k=1

2�k.ln(2k)

=
1X

k=1

k.2�k.ln(2)

= 2.ln(2)

= ln(4) (4.4)

Thus the expected utility of the lottery is the same as the utility that a sum of
$4 will give to the person, hence the suitable price for the lottery. This attempt at
resolving the paradox, was the beginning of the utility and expected utility approach
to decision making in the presence of uncertainty.

In 1947, John Von Neumann and Oskar Morgenstern, formalized expected utility
theory by delineating a set of four axioms that established the mathematical founda-
tions of the theory and demonstrating how expected utility arises from these axioms.
This formalization helped to cement it for most of the 20th century as the backbone
of modelling human decision making in the presence of uncertainty.

In the next section, we briefly discuss some of these axioms and illustrate how
the decision making behaviour prescribed by expected utility theory and follow that
up with how it is used to make decisions. Our discussion will be largely cursory -
interested readers who will prefer more rigour are referred to [70], [55] and [94].

4.2 Expected Utility Theory and its Axioms

The axioms that make up Expected utility theory are itemized below and then dis-
cussed in further detail:

1. Transitivity

2. Completeness

3. Monotonicity

4. Continuity

5. Independence

While alternative formulations of the axioms of expected utility hold (see [84] and
[94] [122]), we are still able to discuss expected utility theory using the above rules.

Transitivity and completeness are necessary axioms needed for consistency from a
behavioural point of view of the theory (and decision making in general). Transitivity
of decisions simply means that if a decision, A, is preferred to another decision, B,
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and B in turn preferred to a third, C, then A should be preferred to C. The absence
of this structure on preferences will give rise to a scenario where A is preferred to B,
B to C and possibly, C to A leading to cycles of preferences with no clear choice that
can be made.

Completeness states that between any two options A and B, there is a clear
preference represented by one of three relations: A is preferred to B, B is preferred to
A or the decision maker is indi↵erent between the two. This ensures that a decision
can always be made given a set of options - even when the decision implies that any
of the choices are good enough (indi↵erence among all options). Without it, it is
possible in a set to have a pair of decisions for which nothing can be said about the
preference.

Monotonicity, continuity and independence are more directly related to the math-
ematical structure of the theory. Monotonicity is described by Ross [94] as the fol-
lowing: if a new lottery is preferred to an old lottery if it is simply created by moving
probability mass from lower outcomes to a higher outcome. Informally, it is the dom-
inance principle highlighted by Peterson [84] as that if under all states of nature, one
decision produces an outcome better than another decision, that decision (the first)
has a higher utility than the second.

Continuity allows us to express/reduce any outcome for a particular state of nature
as a lottery between getting the best outcome and the worst outcome. For example,
if a project has 3 possible outcomes with scores 1, 5 and 10 with 1 and 10 being the
best (clearly) and 5 being intermediate, continuity states that the utility of outcome
5 can be expressed as a lottery over getting the an outcome 10 and an outcome 1 or,
mathematically,

u(5) = p⇥ u(10) + (1� p)⇥ u(1) (4.5)

In equation 4.5, ‘p’ represents the probability of getting the best outcome and
(1 - p) the probability of getting the worst outcome. Continuity says that for any
intermediate outcome between the best and the worst, there should be a value of p
that makes the decision maker indi↵erent to the option to

• either get the original outcome for sure or

• play a lottery where he has the probability , ‘p’, of getting the best outcome
and a probability of ‘1-p’ of getting the worst.

The independence axiom at its heart states that the preference between a choice,
A, and another choice, B, should be the same regardless of which other choices there
are present in the mix. More specifically, the presence of third decision, C, in the
set of options should not a↵ect the preference between A and B. It does not say, for
example, that it may not change the choice of the decision selected as C, may, after
all, be better than A or B, or both. The preference between A and B however should
remain the same.

When all of these axioms are satisfied (or their alternative representations), it can
be shown that there exists a utility function that is able to represent the preferences
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of the decision maker over the choice set and, in the presence of uncertainty (repre-
sentable by probability distributions), his decisions will be identical to those made
by maximizing the expected utility of the di↵erent choices. We won’t prove the ex-
pected utility theory here but interested readerd are encouraged to look at references
[70] [122], [55], [121] and [94] for a more mathematical discussion. Thus given the
outcomes of the particular decision over the di↵erent states of nature, the probability
distributions of those states as well as theutility function over the outcome space, the
expected utility of the decision, EU is given by

EU =
NX

k=1

pku(xk) (4.6)

for discrete outcome space and

EU =

Z 1

�1
u(x)f(x)dx (4.7)

for decisions with a continous space of ourcomes. The choice that will be picked by
the decision maker will be one that gives the maximum expected utility. Thus, once
we know the utility function of the decision maker, we can use it in making decisions
as will be demonstrated in the following section.

4.2.1 Decision making with Expected Utility

To make decisions with expected utility, we need to determine the utility function
that represents the preferences of the decision maker and translate each outcome to a
utility and then calculate the expectation (the probability-weighted average) to arrive
at the expected utility score. This is similar to the expected value approach with one
di↵erence - that the expected utility is a function of the utility function of the decision
maker and so di↵erent projects can have di↵erent expected utilities (whereas they all
have just one expected value). Take Figure 4-2 with the following decisions whose
outcomes are represented by the (continuous) distributions

The outcomes are shown with the expected values of each decision displayed. With
the expected value rule, the decision maker will choose project X as it has the highest
expected value. Now, let’s assume we have three decision makers, each with one of
the three utility functions listed below:

U1(x) = ln(1 + x)

U2(x) = x (4.8)

U3(x) = x+ e0.07x

These utility functions are displayed in Fig 4-3. We use equations 4.7 and ?? to
calculate the expected utilities which are reported in Table 4.2.

From the table, we see that for decision maker 1, option Y maximizes the expected
utility while for decision makers 2 and 3, option X maximizes the expected utility.
Thus when presented with a choice of all three projects, the decision makers will
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Figure 4-2: Distributions of three di↵erent options available to decision makers

Decision Maker Options X Option Y Option Z
1 3.36 3.41 3.38
2 30.06 29.45 28.49
3 41.17 37.64 35.88

Expected value of option 30.03 29.54 28.50

Table 4.2: Expected utilities of the di↵erent options for the di↵erent decision makers
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Figure 4-3: Utility functions for the di↵erent decision makers
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Figure 4-4: Transformation utility functions of the di↵erent decision makers

Decision Maker Option X Option Y Option Z Selection
1 0.854 0.867 0.860 Y
2 0.602 0.591 0.570 X
3 0.497 0.455 0.432 X

Expected value of option 30.03 29.54 28.50 X

Table 4.3: Expected utilities of the di↵erent options for the di↵erent decision makers

choose accordingly, if they make decisions via expected utility. One thing that comes
across clearly in the three di↵erent utility curves in Figure 4-3 is that they span
di↵erent scales - the utility function of decision maker 1 spans from 0-5, that of
decision maker 2 from 0-60 and, for decision maker 3, the range goes from 0-200. The
absolute values obtained don’t have any meaning in particular as all of these utility
functions can be rescaled to give utilities that range from 0 to 1 by an appropriate
linear transformation, and the choices obtained from using the original forms will
be the same as those obtained from the new transformed utility functions. The
linear transformation can be obtained by rescaling the utilities3, giving the minimum
outcome a utility of 0 and the maximum outcome a utility of 1. We illustrate the
transformed utilities in Figure 4-4 as well as the respective decisions in Table 4.3. As
we can see, the choices are identical to those made using the original utility functions.

3In this case, since all the utilities started from a value of zero, the simplest transformation of
scaling by the maximum utility was su�cient.
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4.3 Classification of utility functions

Often though, under expected utility, it is possible to classify the general behaviour
of the utility function into groups with certain characteristics even when its specific
functional form is unknown. There are three main groups that these fall into:

• Risk-seeking utility functions

• Risk-neutral

• Risk averse

These groups are classified with relation to the choice between a lottery and its
expected value - which one will be picked. Risk-seeking utility functions represent a
group of decision makers who would rather choose a lottery than its expected value
for sure. That is, the expected utility of the lottery will exceed the utility of the
expected value of the lottery or

EU(X)] > U(E[X])(4.9)

where E represents the expectation operator, U represents the utility function and X
the random variable symbolizing the distribution of outcome. Under expected utility,
these decision makers’ utility functions will everywhere have a second derivative that
is positive i.e.

U 00(x) > 0 (4.10)

Behaviourally, these correspond to people who are more risk seeking and for whom
the possibility of a large payo↵, even though it is quite slim, dwarfs the downside of
a large probability of modest to poor payo↵s.

Risk-neutral utility functions represent the group of decision makers that are in-
di↵erent between the choice of a lottery or a certain outcome equal to the expected
value of the lottery. In other words, the expected utility of the lottery equals the util-
ity of the expected value of the lottery - leading to this indi↵erence. Mathematically,
under EU, this is possible only when the utility function is linear which corresponds
to a function whose second derivative is everywhere zero i.e.

U 00(x) ⌘ 0 (4.11)

Risk-averse utility functions are the final group and they represent decision makers
that will choose the certain expected value outcome over the lottery. Mathematically,
under EU, this corresponds to the second derivative everywhere being strictly less
than zero i.e.

U 00(x) < 0 (4.12)

and

70



U(x)

X X

U(x)

U(x)

X

Figure 4-5: Some general shapes of utility preferences. The top left represents the
risk-averse decision maker, the top right the risk-neutral and the bottom, the risk-
seeking decision maker

U(E[x]) > E[U(x)] (4.13)

Most people are risk-averse in making decisions and often all that varies is the
degree to which they are risk averse and our focus in this thesis will be on this group.
The general shapes of these utility functions are illustrated in Figure 4-5 although
there could be variations within each group. For instance the second derivatives don’t
necessarily have to be monotonically increasing or decreasing (need to illustrate) as
long as they satisfy the relationship necessary for the utility function to stay in the
same class.

4.4 Decision making without utility functions

Since utility functions help in making decisions, the best way decisions can be ana-
lyzed for the decision maker is by extracting his/her utility function and using this
function to determine expected utility values. This was the approach taken after
the establishment of expected utility as a model for prescriptive choice and di↵er-
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Project Distribution Parameters
1 Beta ↵ = 3, � = 6
2 Lognormal µ = 0.31, � = 0.08
3 Beta ↵ = 1.56, � = 6
4 Beta ↵ = 1, � = 3.2
5 Lognormal µ = 0.22, � = 0.04
6 Lognormal µ = 0.27, � = 0.12

Table 4.4: Distributions of projects in Example

ent methods for extracting the utility functions of decisions makers were developed.
However, these methods have been fraught with a number of di�culties and has in
general had mixed reviews with respect to its use. See Wakker [122] for a discussion
of some of them.

Knowing the general class to which the decision maker’s utility function belongs is
however often much easier to determine - especially within a decision context. within
a decision situation what class of utility functions the decision maker’s particular
utility function will fall into i.e. whether he or she is risk-seeking, risk-neutral or
risk-averse.

The big question is this - is it possible to use just the knowledge of the utility
class to screen the set of initial options available to the decision maker? Before
we attempt to answer this, we introduce another simple example problem that will
further illustrate the point.

Example Assume we have a set of project options representable by the following
distributions with parameters given in Table 4.4

In addition we pick a family of utility functions represented by the general class
of functions

U(x) = xn (4.14)

This function has the property that over the outcome range (that is, values of x),
we get risk seeking utility functions for n > 1 and risk-averse utility functions for
0 < n < 1 and risk-neutral functions for n = 1. Also, for larger n (and conversely,
smaller values of 1/n), we get more strongly risk-seeking (conversely more strongly
risk-averse) behaviour, allowing us to explore the di↵erent decisions that a range of
decision makers with these classes of utility functions will pick. These utility functions
are illustrated in Figure 4-6,4-7,4-8.

To make decisions using EU for the di↵erent utility functions, the projects out-
comes are transformed to utility outcomes using the functions and the expected utility
is calculated for each project and for each function. The project that gives the max-
imum expected utility for each for each utility function is selected as the project to
be picked. Table 4.5 presents the decisions selected by each class of decision maker.

The probability densities of the di↵erent decisions are presented in Figure 4-9.
A number of observations can be made from the above results. First, projects 3
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Figure 4-6: Risk-seeking utility functions for the example
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Figure 4-7: Risk-neutral utility function for the example

Utility Class Selected Projects
Risk-seeking 1, 4, 6
Risk-neutral 1
Risk-seeking 1, 2

Table 4.5: Decisions selected by classes of utility functions
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Figure 4-8: Risk-averse utility functions

and 5 are not selected by any of the decision makers. This is because they are each
dominated by another project in the e�cient set. This point will be expanded upon
in the forthcoming chapter.

For the risk-seeking class, we have that as the decision makers become more risk
seeking, they begin by choosing project 1 (least risk-seeking decision) and end up
choosing project 6 (the most risk-seeking). This can be more clearly seen in the
density functions for each of the projets shown in Figure 4-10. First we should point
out that the project means can be ranked as 1, 4, and 2 i.e. project 1 has the largest
mean of the three followed by project 4 and then by project 6. But risk-seekers favour
projects with higher outcomes rather than means. Thus for the mid-range outcomes
(i.e. 0.35-0.7), project 1 gives the probabilities of the highest outcomes so it is the
favoured project for some. The more risk-seeking prefer project 4 because beyond
0.7, it gives the largest probability of getting the best reward (and much of the utility
function of these decision makers is flat before that as seen in Figure 4-6). The most
extreme pick project 6 because, even though the region is not visible in the figure, it
has the highest probability of the best outcomes for outcomes really close to 1 - the
desire of most risk seekers.

Risk-neutral decision makers care only about the means of the project outcomes
so the project that will be picked will simply be the one with the largest mean which
is project 1. The distribution around this mean doesn’t matter and as such regardless
of the spread, the project with the largest mean will be selected.

For risk-averse decision makers, the choice of project starts with project 1 for the
less risk-averse decision makers and switches to project 2 as the utility function gets
more risk averse. As displayed in Figure 4-11, Project 1 has more extreme outcomes
than project 2 - in particular the downside is much worse, with a significant probability
of getting outcomes lower than 0.1 (which is virtually non-existent for project 2). Even
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Figure 4-9: Probability densities of the di↵erent projects
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Figure 4-10: Probability densities for the di↵erent decisions in the risk seeking decision
set

though it also has a better upside as well, the downside matters more as the decision
makers get more risk averse and the upside is insu�cient to compensate for the risk
of the poorer downside.

As we see, the di↵erent classes of the utility functions screened the initial decisions
appropriately and led to smaller choice sets. However, we were only able to do this by
running a large number of utility functions for each class and grouping the decisions.
As we mentioned earlier, the particular utility function of the decision maker is often
unknown. The set of utility functions of a particular class is also infinite and it will
thus be impossible to use the brute force method to appropriately screen the option
set to yield the e�cient set. A method that allows us to still screen the decisions
without having to know utility functions will thus be valuable and we present that
method in the next chapter.

4.5 Challenges and improvements to EU Theory

The method we will be presenting in the forthcoming chapter, Stochastic Dominance,
largely relies on the fact that utility and expected utility theory provide a good
framework for the representation of the preferences of decision makers. This has been
the classical view of economic theory so much so that preferences that comply with
this framework are called rational preferences. Behaviour that deviated from this
model is irrational in the economic sense.

However, since the formalization of expected utility theory, several paradoxes
have arisen that challenge its basic axiom. The Allais paradox illustrated that the
independence axiom doesn’t hold very well in practice for individual decision makers
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Figure 4-11: Probability densities for the di↵erent decisons in the risk averse decision
set

because people tend to demonstrate probabilistic sensitivity - overweighting small
probabilities and discounting large probabilities [122]. This flaw was rectified by a
modified treatment of probability in Rank Dependent Utility Theory developed by
John Quiggin [88] where decision weights to the outcomes are not the probabilities of
the outcomes as in EU but a weighting function that depends on ranks. This theory
and how to apply it is discussed more thoroughly in [89].

Perhaps the biggest challenge to EU though came in the form of Prospect Theory
developed by Kahneman and Tversky [52] and represents a comprehensive model
for human decision making that is able to incorporate and model irrationality as
portrayed by EU, work for which Kahneman was awarded the Nobel Memorial Prize
in Economic Sciences 4. Prospect theory provides two new insights that is ommitted
by EU i.e. loss aversion and reference dependence [113] . Loss aversion characterized
the fact that in general, humans are more sensitive to losses than gains, and will do
more to avoid loss than gain an equivalent amount [114]. Furthermore, what counts
as a loss or a gain is a function of the reference point from which the change in state is
evaluated - the phenomenon of reference dependence [113]. Both of these phenomena
lead to contradictions under expected utility theory but are adequately explained by
prospect theory.

In prospect theory, decision makers can also have a sigmoidal utility function
illustrated in Figure 4-12 - a function that displays both risk-seeking and risk averse
behaviour. In line with observations of real decision makers, it is sometimes the case
that below a certain threshold, individuals tend to display risk-seeking behaviour

4Tversky died years before the award and hence could not have been, under the guidelines of the
prize, considered posthumously
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Figure 4-12: Sigmoidal utility functions that display both risk-seeking and risk-averse
behaviour

while above that threshold, risk-averse behaviour is observed.
In the figure, we have three utility functions that cross at outcome 0.5. Below

this threshold, the functions display risk-seeking behaviour, similar to that seen in
Figure 4-6 while above the threshold they display risk-averse behaviour, akin to that
observed in Figure 4-8. This joint behaviour is not captured by the utility functions
earlier studied and in order for the analysis of di↵erent risk preferences to be complete,
it is necessary at some point that these functions are included. Levy [64] begins pre-
liminary discussions on how Stochastic Dominance can be applied to utility functions
in prospect theory and interested readers are encouraged to look through in more
detail. Our analysis doesn’t include these utility functions in part because at present,
our goal is to come up with a prescriptive approach for how decisions should be made
in the presence of uncertainty and prospect theory is still very much a descriptive
theory - unlike expected utility. We will thus recommend caution in applying the
methods developed in the next chapter in decision situations where expected utility
theory fails to adequately describe the decision maker’s references.
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Chapter 5

Stochastic Dominance

This chapter presents our framework for incorporating knowledge and information
(full and partial) of the decision makers into the selection problem in a way that
is transparent, that doesn’t assume more than is necessary, and can still act as an
e↵ective rule for making decisions in the presence of uncertainty.

We begin by defining the approach and the many rules that comprise it. We
demonstrate, using the examples from Chapter 2, how it can also be used to make
decisions among di↵erent projects. After that, we show its link to the preference
axioms we highlighted in Chapter 4.

Stochastic Dominance is not without its challenges and, as such, we go further
into our analysis by examining them and highlighting how recent developments in the
field have been able to overcome some of them.

5.1 Introduction

As demonstrated in the previous chapter, once we know the utility function of a deci-
sion maker, it is possible, given a list of options and the uncertainties associated with
each, to determine which decision maximizes his expected utility. We did, however,
point out that utility functions in general are hard to elicit with known problems
associated with trying to do so.

Furthermore, we mentioned that when we lack information about the exact utility
function of the decision maker, we often know something about a larger class to
which the function belongs. For example, we know that in general utility functions
of decision makers are monotonically increasing. This results simply from the
natural inclination of most people to want more (not less) of a good - especially one,
like wealth, that need not be consumed directly (else it su↵ers from the saturation
phenomenon where, beyond a certain point, increasing amounts of something result
in a decreasing utility).

As a result, we have the question: is it possible to screen among uncertain projects
knowing only the class that the decision maker’s utility function belongs to? We can
do so and Stochastic Dominance is the general framework that allows us to. But
before we discuss the approach in detail, it may be worthwhile to illustrate them with
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State Project X Project Y Project Z
1 2 5 7
2 4 8 4
3 6 12 9
4 8 20 12

Table 5.1: Outcomes for three di↵erent illustrative projects

Project Y Project Z
5 4
8 7
12 9
20 12

Table 5.2: Outcomes for three di↵erent illustrative projects

some examples. Take a set of three projects X, Y and Z with returns under di↵erent
states of nature given in Table 5.1.

We assume that every state of nature is equally probable (since there are n states,
this give a probability of 1/N). When we compare project X and project Y, we see
that even though both projects are uncertain, anyone who prefers more to less (i.e.
whose utility function is monotonically increasing) will prefer project Y to X as in
every state of nature, the returns of project Y supersede that of X.

Comparing states Y and Z, we observe that the story is a little di↵erent i.e. there
are states of nature (state 1) where project Y does better than project Z. However,
and this di↵erence is crucial, so long as there is no particular preference for states (the
utilities capture all the preference), then the scores can be re-ordered as demonstrated
in Table 5.2. A look at that table illustrates a similar relationship between Y and Z
and X and Y and clearly Y is the superior project.

Thus, knowing nothing other than the monotonically increasing nature of the
utility function (as well as state-independence) allowed us to select a project out of
three di↵erent options. With far more options and more knowledge of the contraints
on the class of utility functions, we can do even more, performing a stronger refinement
of the utility class and eventually reducing the number of possible options to one that
can be selected by the decision maker. The general framework for doing this is what
we call Stochastic Dominance.

Very simply, stochastic dominance is the application of the dominance principle
(discussed in Chapter 2) to uncertain distributions. Stochastic dominance as a de-
cision rule aims to classify decisions into e�cient sets using the fact that the utility
function satisfies one or both of the characteristics above without assuming any other
functional class or form of the utility function. In describing stochastic dominance
in detail, we will be comparing two decisions X and Y with distributions FX(z) and
GY (z) associated with their outcomes.
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Figure 5-1: Illustration of First order Stochastic Dominance (FSD) using three dif-
ferent projects A, B, C

5.2 Stochastic Dominance orders

There are two principal orderings of Stochastic Dominance: First and Second or-
der Stochastic Dominance. While in principle, there are third and higher orders of
stochastic dominance that can exist and theoretically be used (a point that will be
expanded upon much later), these two orders are used most often because they retain
behavioural intuition about the decision-making process. We discuss each of them
below:

5.2.1 First Order Stochastic Dominance

First order stochastic dominance is the rule for all decision makers with strictly in-
creasing utility functions i.e. for all utility functions satisfying U 0 � 0, where U 0 is
the first derivative of the utility function, U

For this class of utility functions dominance can be restated in terms of conditions
on the distibutions of the outcomes of X and Y. For the FSD, the basic condition is
that

FX(z)  GY (z), 8z (5.1)

where FX(z) and GY (z) are the cumulative distributions of X and Y. In other words,
the cumulative distribution of the decision Y, must be to the right of that of decision
X. Stated di↵erently, for every possible outcome, z, decision X has a higher probability
of generating that outcome, or better, than decision Y. Thus, any decision maker who
prefers more to less will choose X over Y.
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Figure 5-2: Illustration of Second order Stochastic Dominance (FSD) using projects
A, B, C

An illustration of FSD is shown in Figure 5-1. Here the cumulative distributions
of three di↵erent projects, A, B, and C are shown on a single plot. Graphically,
FSD corresponds to the cumulative distribution of the dominating distribution lying
entirely to the right of the dominated distribution. This is true for A and C with
respect to B. Hence A and C dominate B via FSD. However, A and C intersect (near
outcome score 33) and so neither lies entirely to the right of the other and so there
is no dominance relationship between them. Since there are only three outcomes, A
and C thus belong to the FSD e�ciency set while B is in the dominated set.

5.2.2 Second order Stochastic Dominance (SSD)

Second order stochastic dominance (SSD) is the rule for all decision makers with
risk-averse (concave utility functions). This is the set of utility functions that belong
to the set u 2 U2 : U 0 � 0, U 00  0.

For SSD, the condition on the distributions is that
Z z

�1
FX(⇣)d⇣ 

Z z

�1
GY (⇣)d⇣ 8z (5.2)

i.e. if X dominates Y, then for every outcome level, z, the area under the cumula-
tive distribution of X up to z must be less than that of Y. We again illustrate the SSD
relationship using the same projects from the FSD illustration. This is shown in Fig-
ure 5-2. As with FSD, SSD graphically corresponds to the integral of the cumulative
distribution, (which we will hence refer to as F (2) after Ogryczak and Ruszczynski,
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Figure 5-3: Relationships between e�cient sets for the di↵erent Stochastic Dominance
orders

[78] of the dominating distribution lying entirely to the right of the dominated dis-
tribution. Again, we see that projects A and C have their F (2) curves lying entirely
to the right of project B, illustrating SOSD. This is a result of a larger principle that
lower order dominance (in this case, FSD) always implies higher order dominance
(here, SSD). In addition, we observe that now project C lies entirely to the right of
project A, illustrating dominance by SSD. Thus, the e�cient set of SSD in this case
contains only project C. This illustrates another general principle that is, in part,
a consequence of the first one observed: the e�cient sets of higher order stochastic
dominance rules are subsets of the e�cient sets of lower order rules.

In general, the analytical forms of distributions of X and Y are not known exactly
and are obtained by sampling. In that we have a list of outcomes of X and Y and
this can be used to construct empirical distributions, F̂X(z) and ĜY (z) which are
then used to carry out the comparison. For the rest of our analysis we will be
using empirical distributions and won’t make any distinction between continuous
and discrete distributions.

5.3 Implementation of Stochastic Dominance

To determine whether one random variable stochastically dominates the other, we use
the relations established in equations 5.1 and 5.2 in comparing both projects. The
algorithms used are presented in Appendix B but the flowchart is presented in Fig
5-4 for easy reference.
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Figure 5-4: Flowchart for Stochastic Dominance Algorithm
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Project Distribution Parameters
1 Beta ↵ = 3, � = 6
2 Lognormal µ = 0.31, � = 0.08
3 Beta ↵ = 1.56, � = 6
4 Beta ↵ = 1, � = 3.2
5 Lognormal µ = 0.22, � = 0.04
6 Lognormal µ = 0.27, � = 0.12

Table 5.3: Distributions of projects in Example

Stochastic Order E�cient Set
First Order 1,2,4,6
Second Order 1,2

Table 5.4: E�cient sets for the di↵erent Stochastic Orders

If no dominance is observed, higher and higher orders can be used, although as
will be discussed in a subsequent section, beyond SSD, the rules don’t make much
intuitive, economic sense and are largely mathematical artefacts. An example of how
Stochastic Dominance is used is illustrated with a simple example below.

5.4 An Illustrative Example

We illustrate the application of Stochastic Dominance to the example in the previous
chapter where we had to choose from 6 di↵erent projects. The distributions and their
parameters are reproduced in Table 5.3

The cumulative distributions are illustrated in Figure 5-5, with all of the distri-
butions shown together in Figure 5-6.We also present the outcome of running the
di↵erent Stochastic Dominance orders on the decision set in Table 5.4.

A number of things can be observed: First, the SSD e�cient set is a subset of
the FSD e�cient set. This is because the utility functions that characterize the SSD
set are a subset of those in the FSD set. This will be discussed in further detail in
a later section. Also, if we compare the results in this table to that in Table 4.5
in the previous chapter, we see that the FSD e�cient set contains all the decisions
selected by all three classes of decision makers. This is not coincidental. All three
groups are subsets of the utility functions that characterize the SSD set i.e. they are
all monotonic increasing utility functions. Thus since the FSD set will contain all the
decisions that can be chosen by any decision maker with a monotonically increasing
utility function, it is no surprise that all the decisions make it in.

Another important observation is that the SSD set contains exactly the same set
of decisions as those in the set for Risk-averse decision makers. And we obtained this
set without needing to test multiple utility functions repeatedly.
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Figure 5-5: Cumulative distributions for the di↵erent projects in Table 5.3
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Figure 5-6: Cumulative distribution of all the projects together

5.5 Improvements/Refinements on Stochastic Dom-
inance

Stochastic Dominance In order to address some of the observations, there have been
a few modifications to the SD rules. These modifications have been introduced under
the heading Almost Stochastic Dominance - ASD (Leshno and Levy [62], Levy [64],
Lizyayev [65]). These modifications are meant to eliminate implausible utility func-
tions and prospects that keep SD rules from identifying superior prospects that are
more in line with what most decision makers will select.

5.5.1 Necessary and Su�cient Rules for SD

One of the biggest challenges in the implementation of Stochastic Dominance for
project decision making is the relative computational time that it takes to carry out
relative to the more commonly used metrics like the mean-variance and the expected
value formulations. An anecdotal case - for one reasonably sized problem we ran, the
Stochastic Dominance framework took about 3 orders of magnitude (close to a 1000
times) longer to compute the feasible set compared to the mean-variance and the oher
mean-risk formulations. For larger problems, this di↵erence in computational times
may be amplified so that unless better algorithms and developed and more compu-
tational infrastructure is devoted to the problem, the SD framework is doomed to be
much slower. However, in cases where the cost of infrastructure and computational
time is minimal relative to the cost of the implementation of the decision, it may be
worth it.

Improvements to speed can be made using necessary and su�cient rules discussed
by Levy [64] and these are summarized below:
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Necessary and Su�cient rules for First Order SD For first order stochastic
dominance of a project F over another project G, there are a number of necessary
conditions that must be satisfied

1. The arithmetic mean of F must be greater than the mean of G i.e. E[F ] > E[G]

2. The geometric mean of F must be greater than the geometric mean of G

3. The smallest value of F must be at least as large as the smallest value in G i.e.
minF (x) � minG(x)

Where any of these conditions are violated, FSD of F over G cannot be estab-
lished and we can avoid the long tedious computation of comparing the cumulative
distributions of F and G over their entire outcome space can be avoided.

For FSD, there is essentially only one su�cient rule for establishing the dominance
of F over G and that is that the smallest value of F is at least as large largest value
of G i.e minF (x) � maxG(x). Note that this is not strict because it assumes that F
and G don’t contain only one value as this will just be degenerate in both cases.

Necessary and Su�cient rules for Second Order SD The necessary rules for
F to dominate G by SSD are that

1. The mean of F must be as large as that of G i.e. E[F ] � E[G]. Note the
di↵erence from the necessary rule for FSD.

2. The geometric mean of F must be as large as that of G

3. The smallest value of F must be at least as large as the smallest value in G i.e.
minF (x) � minG(x)

The necessary rules in both cases are similar but there is the subtle di↵erence
of strict and non-strict inequality in the first two cases. Fishburn [35] shows that
if F strictly dominates G by Nth degree dominance and both F and G have finite
moments through order N, then all the moments cannot be equal and for the first
unequal moment, µk

F and muk
G, the relationship below holds.

(�1)k�1µk
F > (�1)k�1µk

G (5.3)

Thus for FSD it is necessary that the means are unequal but it is allowed for
SSD. With equal means, dominance by SSD corresponds to inequality in the second
moments and by the relationship in 5.3 the second moment of F (the variance) will
be smaller than the second moment of G, a relatioship discussed in [95].

5.5.2 Higher order Stochastic Dominance Rules

While our attention in this work will largely be centered around First and Second
order Stochastic Dominance, we’ll briefly define Third and Higher order stochastic
dominance here.
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Third Degree Stochastic Dominance Whitmore [125] introduced the concept
of Third Order (degree) Stochastic Dominance (TSD) and defines it as the rule for
ordering projects for the members of the class of utility functions U3 for which we
have

U3 = {u : u0 > 0, u00 < 0, u000 > 0} (5.4)

and the prospect X being preferred to the prospect Y via TSD if
Z a

v

Z a

w

[F (z)�G(z)]dzdy  0 8x 2 [a, b] and (5.5)

E[X] � E[Y ] (5.6)

TSD is rarely used in practice because of di�culty in getting some economic intu-
ition from it [125]. FSD is the rule for decision makers with monotonically increasing
preferences; SSD the rule for those with monotonically increasing and risk averse
preferences. The closest preference for which TSD does have some intuition is that
for decision makers with a preference for skewness (the section in which [64] discusses
it) although in general, it is thought to be of more theoretical interest rather than
for practical decision recommendations [125]. Bawa [12] however shows that when
comparing prospects with equal means, the TSD rule is the optimal rule to use. Fur-
thermore, the set U3 listed above is known to contain as a proper subset the class of
utility functions in U2 which also exhibit non-increasing absolute risk aversion [126].

Nth degree Stochastic Dominance Stochastic dominance can be generalized
from third to higher orders. First we define as in [35], the recursive relations

FN+1(x) =

Z x

0

FN(y)dy 8x � 0 and n 2 {1, 2, ..} (5.7)

and the set of utility functions

UN = {u : (�1)i�1ui > 0, 8i = 1, 2, 3, .., N} (5.8)

With these, we have that the prospect X dominates Y by NSD if

FN(z)  GN(z) 8z 2 [0,1] (5.9)

Since we earlier pointed out that TSD has di�culty in application, it is not ex-
pected for the higher order SD rules to be used for decision making except for theoret-
ical interest. However, for completeness sake, it should be noted that they do refine
the e�cient sets in more detail and can only improve the selectiveness of the final
decision that is picked as illustrated much later in Figure 5-3. The challenge however
is that the resulting decision will likely be an artifact of mathematical manipulations
rather than one that can be supported by economic and behavioural intuitions.
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Completely Monotonic Stochastic Dominance (CMSD) So far, we have only
analyzed specific classes of utility functions with a fixed number of continuous deriva-
tives - first, second and third. Whitmore [126] introduced yet again a new SD rule for
the set of utility functions that have derivatives of all orders i.e the class U1 defined
as follows:

U1 = {u : (�1)i�1ui > 0, 8i = 1, 2, 3, ..,1} (5.10)

To develop the CMSD rule in the manner of the Nth order SD rule, we will have
to recursively integrate to infinity according to equations 5.7 and 5.9, a proposition
that is quite impossible. Another approach to implementing the CMSD rule will thus
have to be found, one which was developed in [125] and is reproduced below:

First [126] presents results from [20] that show that the classes of utility functions
that have been of interest have the property of being closed convex cones i.e.

For any u1, u2 2 U and c1, c2 � 0, c1u1 + c2U2 2 U (5.11)

with the completely monotonic class, U1 having said property. With this property,
any utility function in a particular class can be written as a positive linear combination
of the extremal functions that make up this class. As a result, once we figure out
what the extremal functions for each class is, we can derive the necessary conditions
for that rule. For example, the extremal utility functions for the FSD rule are the set
of utility functions defined as

ha(x) =

(
1 x � a

0 x < a
8a 2 [0,1] (5.12)

and using this function to calculate expected utilities for a project with distribu-
tion F gives

EF [h(a)] =

Z 1

0

ha(x)dF (x) = 1� F (a) (5.13)

which, when comparing it with another project with cumulative distribution G
gives the result

1� F (a) � 1�G(a) 8a orF (a)  G(a) 8a (5.14)

which is the more familiar FSD rule that we have discussed earlier. Bernstein’s
theorem helps provide the extremal utility function of the set U1 as

ha(x) =
1� exp(�ax)

a
8a 2 [0,1] (5.15)

which, when we apply the expected utility operator gives

EF [h(a)] =
1�MF (a)

a
for a > 0 (5.16)

where MF (a) is the Laplace-Stieltjes transform of the the cumulative distribution,
F. CMSD has the advantage that is shows the decision range of the stochastic domi-
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Figure 5-7: Illustration of convex SD

nance rule along a single scale. For when a tends to zero, the rule corresponds to the
comparison of the means of the distributions (which is the way a risk neutral decision
maker will decide) while as a approaches infinity, the rule becomes the comparison of
the worst case scenarios. But as with TSD and NSD, CMSD has largely remained of
theoretical interest and has not fully translated to applications in the decision making
domain like FSD and SSD.

5.5.3 Convex Stochastic Dominance

Traditional stochastic dominance has largely dealt with admissibility of functions to
an e�ciency set i.e. the set of decisions that excludes dominated functions determined
by partial information of the decision maker’s utility function. However, [13] high-
lights the di↵erence between the admissible set - the set which excludes dominated
decisions - and the optimal set, which is the set that contains decisions that will be
picked by a decision-maker with the utility function in the particular class. The idea
of such a di↵erence is illustrated in Figure 5-7

The figure is an illustration of a choice between three projects: F,G and H. In
the figure, the box, A represents the set of all utility function that belongs to a given
class1, and each labelled region represents the set of utility functions that give rise to
a particular choice that any decision maker with a utility function in the class A will
pick.

In the figure on the left, F, G and H are disjoint and together cover the entire
class, A. When the relevant dominant rule is implemented on each pair of decisions
({F,G}, {G,H} and {F,H}), none will dominate the other because there is a set of
utility functions (the region of A covered by the respective choice) for which each
decision is optimal. As a result, all the decisions will be admissible i.e. none will be
dominated. Also, when presented with a choice of all three, there is a set of decisions
where each option will be the optimal choice. admissible set. and optimal e�ciency
set. Since each decision will be picked, all three decisions furthermore belong to the
optimal set

The figure on the right however illustrates a slightly di↵erent case. In this scenario,

1say,for example, the class of all monotonically increasing utility functions
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like the one on the left, regular, pairwise dominance will not reveal any dominance
because for any pair of decisions, there is a region of A covered by one choice in the
pair that is not covered by the other - meaning there are utility functions in A for
which one will be superior to the others. But if we take all three together, we see
that F and G together cover all of A and it is possible that in the region where H
dominates F, G dominates H hence G will be picked and similarly, where H dominates
G, F dominates G - leading to F being picked. In that case H will never be picked
even though it will belong to the admissible set of decisions. The optimal set (({F,G})
will, in this case, be di↵erent from the admissible set ({F,G,H}.

Convex stochastic dominance is a refinement of regular SD that excludes decisions
like H, which, though admissible, will never be selected by real decision makers. It
was first established by [34] and extended/generalized by [76], [13] and [67].

Like regular stochastic dominance, we can have convex stochastic dominance of
di↵erent orders. In the following, we give the expressions for when distributions
Fi, i = 1, ..., n dominate a distribution, Fn+1, (with no loss of generality). For convex
first order stochastic dominance (CFSD) we must have a set of �i’s that satisfy the
following [13]

NX

i=1

�iFi(x)  FN+1(x)8x 2 [a, b]

s.t.
NX

i=1

�i = 1 (5.17)

�i � 0, i = 1 to N

And for convex second order stochastic dominance (CSSD), we have

NX

i=1

�i

Z x

a

Fi(y)dy 
Z x

a

FN+1(x)dx8x 2 [a, b]

s.t.
NX

i=1

�i = 1 (5.18)

�i � 0, i = 1 to N

For the third order stochastic dominance, we have that
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Relation Stochastic order
m = 0 First order
m = 1 Second order
m = 2 Third order

Table 5.5: Equivalence Relations for Lower Partial Moments and Cumulative distri-
butions

NX

i=1

�i

Z x

a

Z y

a

Fi(t)dtdy 
Z x

a

Z y

a

FN+1(t)dtdy8x 2 [a, b]

s.t.
NX

i=1

�i = 1 (5.19)

�i � 0, i = 1 to N

As earlier mentioned, our focus will remain first and second order stochastic dom-
inance.

Bawa et al. [13] develop a linear programming algorithm (described below) to
determine the first and second order, convex stochastic dominance sets. They do this
using the concept of the lower-partial moments defined as

Lm(x) =

Z a

x

(x� y)mdF (y) (5.20)

where m is the order of the moment being taken. Integration by parts yields the
relations and their equivalence for stochastic dominance presented in Table 5.5

With lower partial moments, the conditions for an option with cumulative distri-
bution FN+1 to be eliminated by CFSD or CSSD by options with distributions Fi,
for i = 1 to N, can now be generically written as

NX

i=1

�iLm�1,i(x)  Lm�1,N+1 for a  x  b (5.21)

NX

i=1

�i = 1 (5.22)

�i � 0, i = 1 to N (5.23)

where m is the order of convex stochastic dominance being analyzed (1 for CFSD
and 2 for CSSD). It is shown that the inequalites above can be verified by transforming
the equations above to a linear program given below
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Z(m) = max
NX

i=1

�i (5.24)

s.t.
NX

i=1

�iLm�1,i(x)  Lm�1,N+1 for a  x  b (5.25)

�i � 0, i = 1 to N (5.26)

If Z(m) < 1, then there is no feasible solution to the set of restrictions given by
equations 5.23 and as such option Fn+1 is not dominated by the others via convex
stochastic dominance and thus remains in the optimal set. However, if there is a set
of �i’s that solves the equations 5.26 with Z(M) � 1, then the solution can always
be rewritten to satisfy the conditions given by 5.23 by setting �̂i =

�i
Z(m) .

We should also note that to use the linear programming reformulation, it is nec-
essary for the lower partial moment, Lm�1 to be represented using the discrete points
in [a, b]. The discrete version of the LPM is given as follows:

Lm(x) =
X

j|xjx

(x� xj)
mpj for a  x  b (5.27)

Lodwick [67] demonstrates that it is possible to use convex stochastic dominance
directly on the original feasible set. This gives a set of N linear programs to be solved
to determine the e�cient set rather than a comparison of 1/2N(N � 1) cumulative
distributions. However, he concludes that it is generally faster to determine the
admissible set first and carry out the optimization on the reduced e�ciency sets.

[64] notes cases where using CSD led to the reduction in e�ciency sets obtained
by using the regular SD algorithms. He observes that the reduction in the FSD
e�ciency set is only slight but more significant reductions in the SSD (from a third
to three-fifths) e�cient set are obtained.

5.5.4 Almost Stochastic Dominance

The Stochastic Dominance approach to decision making is very comprehensive be-
cause it takes into account all the possible utility functions within each class it is
being applied to. However, because of this comprehensiveness, it sometimes doesn’t
perform very well in terms of decision selectivity i.e. it is still possible for the SD feasi-
ble set to contain a large number of decisions. Many times, this is because within the
large class of utility functions that are under consideration (for example, the class of
all monotonically increasing funtions, U1) there are often some utility functions that
even though are mathematically feasible (like the Leontief utility [70] functions that
correspond to the worst-case approach to decision making), rarely, if ever, correspond
to the utility functions of real decision makers.

To deal with this Leshno and Levy [62] and Lizyayev [65] introduced the concept
of Almost Stochastic Dominance, a relaxation of traditional Stochastic Dominance
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to deal with such problems. Leshno and Levy define Almost First- and Almost
Second order Stochastic Dominance (henceforth referred to as LL-AFSD and LL-
ASSD, together known as LL-ASD) as follows:

Definition LL-ASD Let X and Y be two random variables, and F and G denote
the cumulative disitribution functions of X and Y respectively. For 0 < ✏ < 0.5, we
define:

1. AFSD: F dominates G by ✏-Almost FSD if and only if
Z

S1

[F (t)�G(t)]dt  ✏ kF �Gk (5.28)

2. ASSD: F dominates G by ✏-Almost SSD if and only if
Z

S2

[F (t)�G(t)]dt  ✏ kF �Gk and (5.29)

EF (X) � EG(Y ) (5.30)

where the sets S1 and S2 are defined as follows:

S1(F,G) = {t 2 [0, 1] : G(t) < F (t)} (5.31)

S2(F,G) = {t 2 S1(F,G) :

Z 1

0

G(x)dx <

Z 1

0

F (x)dx} (5.32)

and we define kF �Gk as

kF �Gk =

Z 1

0

|F (t)�G(t)| (5.33)

In other words, the values of t where we test for LL-AFSD (the set S1) are those
where the normal FSD criteria of F over G doesn’t hold and the same holds for the
test for LL-ASSD (the set S2).

In analyzing the LL-ASD formulations, Lizyayev [65] found them computationally
intractable for use in portfolio applications and proposes an alternative formulation
of the ASD framework which he defines as ✏-Almost Stochastic Dominance (✏-ASD).
He define this for both First and Second order Stochastic Dominance as follows:

Definition of ✏-ASD For two random variables X and Y with distributions F and
G respectively we have

1. ✏-AFSD: A random variable X ✏-almost dominates a random variable Y by FSD
if there exists a non-negative random variable, Z such that E[Z]  ✏ and X+Z
dominates Y by FSD
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2. ✏-ASSD: X ✏-almost dominates a random variable Y by SSD if and only if

8t 2 S : F (2)(t)�G(2)(t)  ✏ (5.34)

where F (2)(t) is defined as

F (2)(t) =

Z t

0

FX(x)dx (5.35)

✏-ASSD can be similarly defined like ✏-ASD i.e. where we have X ✏-almost domi-
nate Y by SSD if and only if there exists a non-negative random variable Z such that
X + Z dominates Y by SSD. Lizyayev proves the equivalence of both definitions in
[65]. For this work, we have chosen to use ✏-ASD for our analysis as it is both more
intuitive and computationally easier to implement than the LL-ASD framework.

The big challenge however with ASD (both ✏-ASD and LL-ASD) is the proper
means of selecting the parameter ✏. Up to this point, the SD framework has benefited
from being largely non-parametric making its application universal to all utility func-
tions in a specific class. With the parameter introduced by the ASD approaches, it can
become a subjective decisioin making approach - manipulatable like other subjective
parameters.

One idea, inspired by [72] is to make the value of ✏ dependent on the total amount
of error in the process. When SD rules are implemented, they are carried out using
probability distributions either estimated (or directly implemented) from samples
with measurement noise. If we can connect the parameter to an error tolerance in
the overall result, then we can ensure the transparency of the selection of ✏ and
eliminate personal bias from the analysis process. This is highlighted in Chapter 9 in
the possibilities for future work.

5.6 Stochastic Dominance and Objective Functions

In chapter 2, we examined the relationship of the di↵erent objective functions with
utility theory and saw where they were equivalent i.e. conditions where the rec-
ommendations of the objective function corresponds directly to those that will be
recommended by expected utility.

Under stochastic dominance, we get an e�ciency set of maximal decisions given
the class of utility functions that the utility function of the decision maker is known
to belong. We can similarly think of the objective functions earlier examined as
generating e�cient sets (in some cases, giving rise to a single decision) and as such
we can discuss the equivalence of these objective functions with stochastic dominance.
In general, we seek to determine the objective functions whose e�cient sets are either

1. Equal/Identical to the SD e�cient set

2. Subsets of the SD e�cient set i.e. they are contained entirely in the SD e�cient
set
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3. Supersets of the SD e�cient set i.e. the SD set is contained in the e�cient set
of the decision rule

4. There is some intersection between the SD e�cient set and the decision rule

5. There is no intersection between the SD e�cient set and the decision rule

These relationships are illustrated in Figure 5-8.

In general, we want decision rules in cases 1 and 2 above because, given the
equivalence of Stochastic Dominance and Expected Utility, we are guaranteed that
the decision rule would never give suboptimal decisions for a decision maker of a
particular type of utility function - even if we don’t know what it is. In cases 3
and 4, it is possible that for some utility functions, the decision rule and stochastic
dominance will agree, but there is also the possibility that they will disagree and so
in some cases where we can determine the range where they will disagree, we can tell
where such rules shouldn’t be used.

Knowing these relationships ahead of time help in determining a guide to the
correct use of these rules in decision making, especially since many of these rules can
be implemented much more easily than Stochastic Dominance, more so as we deal
with larger scale and more complex problems.

5.6.1 Stochastic Dominance and Single Objective Functions

Single objective functions typically yield a unique ranking for projects, except for
the case where the objective gives equal scores to the best projects. In evaluating
equivalence with SD for single objective functions, we want to determine if it is
possible for a project with a higher score when comparing a pair of projects (indicating
it will be picked by the decision rule) to be dominated by the project with a lower
score. If that is the case, the rule will have been shown to be inconsistent with SD
and as such should be a flag to the users of the rule

Expected value For the Expected Value objective function, because one of the
conditions of First and Second order stochastic dominance is that µF > µG, when
project F dominates project G and µi is the mean of project i, then the higher mean
project (F in this case) will never be dominated by the lower mean project (G), thus,
selecting the decision with maximum expected value yields a decision that remains
in the SD e�cient set. Moreover higher order dominance rules i.e. nth order rules,
where n > 2 don’t eliminate the requirement on the means [63]

Risk Area Ratio (RAR) As discussed in chapter 2, this metric was proposed by
Aseeri and Bagajewicz [8] as a way to incorporate risk into decisions. To recall, the
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Figure 5-8: Illustration of the di↵erent relationships between the Stochastic Domi-
nance e�cient set (SD) and the mean-risk e�cient sets (MR)

98



0

0.5

1

C
u

m
u

la
ti

ve
 D

is
tr

ib
u

ti
o

n
 

Metric

A

B

Highest Expected 
Value project

Project to evaluate

Figure 5-9: Illustration of Risk Area (region labelled A) and Opportunity Area (region
labelled B)

defined the RAR as follows

RAR =
Opportunityarea

Riskarea
=

R1
�1  +

R1
�1  � (5.36)

where  + = max{FX � FZ , 0}
and  � = max{FZ � FX , 0}

The RAR and the related figures are also displayed again below

From the definition above of the RAR, we can rewrite the first expression in ??
as

RAR =

R b

z (F � F̂ )
R z

a (F̂ � F )
(5.37)

where F̂ is the cumulative distribution of the project with the highest mean, F
is the distribution of an alternative project being compared against it, [a, b] is the
outcome range for the metric. To simplify our analysis, we assume that the two
distributions only cross once at some point z, such that a  z  b. We also omitted
the variable of integration - the argument of the cumulative distribution.

We can rewrite the above expression as

RAR =

R b

a F �
R z

a F � [
R b

a F̂ �
R z

a F̂ ]
R z

a (F̂ � F )
(5.38)
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With integration by parts we know that

Z b

a

F = xF |ab �
Z b

a

xdF (5.39)

Given that F (a) = 0 and F (b) = 1 and
R b

a xdF = µF where µF is the mean of the
distribution, then we have that the above expression becomes

RAR =
[b� µF ]�

R z

a F � [b� µF̂ �
R z

a F ]
R z

a (F̂ � F )

=
[b� µF ]� [b� µF̂ ]R z

a (F̂ � F )
+ 1

= 1 +
µF̂ � µFR z

a (F̂ � F )
(5.40)

The final expression of the RAR in equation (5.40) in terms of the means of the
distributions illustrates the observation that is made in [8] that the RAR will always
be greater than 1. This is because the denominator second term on the right hand
side is always positive (for a single point of intersection, z) and the numerator is also
positive (by definition, µF̂ > µF ), thus making the entire term positive. The RAR
equals 1 only when the means of F and F̂ are equal.

The decision rule for the RAR is simple: for any two projects, pick the one with
the lower RAR. Thus, to test its validity as a rule, we will check if it is possible for an
alternative that is inferior in terms of RAR to dominate, via stochastic dominance,
another alternative that is superior.

We pick two projects, A and B, whose RARs are defined according to equation
(5.40) and, without loss of generality, we assume that project A is preferred to project
B according to the RAR metric. In that case, we will have RARA < RARB or

RARB �RARA � 0 (5.41)

Substituting the general expression in (5.40) we have

µF̂ � µFBR zB
a (F̂ � FB)

� µF̂ � µFAR zA
a (F̂ � FA)

� 0 (5.42)

where zA and zB are the points in [a ]
¯
where the cumulative distributions of A

and B intersect the highest mean cumulative distribution respectively.
We expand this relation to obtain the relation

(µF̂ � µFB)[
R zB
a (F̂ � FB)]� (µF̂ � µFA)[

R zA
a (F̂ � FA)]

(
R zA
a (F̂ � FA))(

R zB
a (F̂ � FB))

� 0 (5.43)

Since we want the expression to be positive, we need the numerator to be (since
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by construction, the denominator is positive). Hence we have

0  (µF̂ � µFB)[

Z zB

a

(F̂ � FB)]� (µF̂ � µFA)[

Z zA

a

(F̂ � FA)] (5.44)

=
(µF̂ � µFB)

(µF̂ � µFA)
[

Z zB

a

(F̂ � FB)]� [

Z zA

a

(F̂ � FA)] (5.45)

Defining a constant, K, as

K =
(µF̂ � µFB)

(µF̂ � µFA)
(5.46)

we can substitute into the expression in (5.45) to obtain

K

Z zB

a

(F̂ � FB)� [

Z zA

a

(F̂ � FA)] � 0

or (5.47)

K[

Z zB

a

(F̂ � FB)] � [

Z zA

a

(F̂ � FA)]

The above inequality can be re-written and transformed to obtain the following
relationship

K

Z zB

a

FB �
Z zA

a

FA  K

Z zB

a

F̂ �
Z zA

a

F̂ (5.48)

If we compare the above equation to the second order Stochastic dominance re-
quirement for B to dominate A i.e.

Z z

a

FB(⇣)d⇣ �
Z a

z

FA(⇣)d⇣  0, 8z (5.49)

we see that it is possible for B to dominate A by RAR when there is no SSD
dominance between them, and, even worse, when A possibly dominates B because we
can use the proof to construct an example where this is the case. This is one reason
why stochastic dominance is important as a decision rule as it is useful for pruning
metrics that turn out to be insu�cient.

5.6.2 Stochastic Dominance and Mean-Risk Formulations

So far, we have seen two general approaches to incorporating risk in decision-making:
the first is the mean-risk formulation, typified by the classical mean-variance objective
proposed by Markowitz [68] and the other is via the use of utility functions, proxied
by Stochastic Dominance. A good number of risk metrics that are used in conjunction
with the mean/expected value have been generated since variance was first proposed
and we discussed some of them in greater detail in Chapter 2.
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Both approaches in general lead to an e�cient frontier of choices and often do not
give unique decisions as recommendations. Mean-risk formulations of the decision
problem have the advantage of being intuitive (people can visualize the tradeo↵s)
and are computationally less burdensome to implement than SD. On the other hand,
given its equivalence with utility theory, Stochastic Dominance is more general and
it can be used for all types of decisions.

As discussed in the beginning of this section, it will be useful to compare the
e�cient frontiers of each objective with SD so that in the cases where they are found
to be equivalent, we can reduce the computations required by the SD solutions by
using the equivalent mean-risk formulation.

In a number of di↵erent papers [78] [79] [80] [81]. Ogryczak and Ruszczynski
develop the partial equivalence of Second order Stochastic Dominance (SSD) and a
number of mean-risk models. To do this, they first define the concept the concept of
mean-risk dominance [78]. A project X is said to demonstrate mean-risk dominance
over a project Y if the following relationship holds

X �µ/r Y () µX � µY and rX  rY

and the above can be shown to lead to the following implication:

X �µ/r Y ) µX � �rX � µY � �rY , 8� > 0 (5.50)

where µX is the mean and rX the risk of project X (similarly for Y). We encountered
this dominance in Chapter 2 when we first discussed the mean-risk approach to deci-
sion making. With mean-risk dominance, they then proceed to define the concept of
consistency with Stochastic dominance. A mean-risk model is said to be consistent
with stochastic dominance if the following relationship holds

X �SSD Y =) X �µ/r Y (5.51)

Since this mode of consistency is often too strong and restrictive (no risk model
has been found to completely satisfy this relationship), the alternative was to relax
the definition of consistency as follows : The mean-risk model is said to be consistent
if there exists a positive constant, ↵ such that for all X and Y

X �SSD Y =) µX � µY and µX � ↵rX � µY � ↵rY (5.52)

They showed that this relationship guarantees that

µX � �rX > µY � �rY for some 0 < �  ↵ =) YSSDX (5.53)

From this relationship, they derive the following proposition: If the mean-risk
model satisfies 5.52, then except for random variables with identical values for the
mean and the risk, every random variable that is maximal by µY ��rY with 0 < � < ↵
is e�cient under SSD.

The above statement simply means that we can compress the mean-risk objective
into a single one, µY � �rY , and by maximizing this expression over the permissible
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Risk measure Expression Consistent with SD? Value of ↵
Absolute deviation [58]

R1
�1 |⇠ � µX | fX(⇠)d⇠ Yes 1

Absolute semi-deviation 1
2

R1
�1 |⇠ � µX | fX(⇠)d⇠ Yes 1

Standard semi-deviation (
R µX

�1(µX � ⇠)fX(⇠)d⇠)1/2 Yes 1
Variance (symmetric)

R1
�1(x� x̂)2fX(⇠)d⇠ Yes 1

Variance (non-symmetric)
R1
�1(x� x̂)2fX(⇠)d⇠ Depends 1/h

Table 5.6: Table of ↵-values of some mean-risk relationships with Stochastic Domi-
nance

range of �, we can generate SSD e�cient projects. We should note that the consis-
tency only holds for 0 < � < ↵. Outside this range, only mean-risk dominance can
be determined and it may or may not correspond to SSD.

In order to use this practically, it is important to know which risk metrics it
holds for and what the value of ↵ is. These are developed in [78] [79] [80] [81]
and summarized below. Before we discuss them though, it will be useful to define
the function F (2), defined also in [78] that plays a significant role in the subsequent
analyses. This has the form

F 2(⌘) =

Z �1

⌘

FX(⇠)d⇠ (5.54)

As we see recall from the equation ??, we see that second order Stochastic domi-
nace for a prospect, X, occurs over a prospect, Y, when

F (2)
X (⌘)  F (2)

Y (⌘) 8⌘ 2 D (5.55)

The function, F 2 (which I will call from here on the second performance function),
has a number of properties, principal among which are that it is continuous, convex,
nonnegative and non-decreasing. Others are again highlighted in [78] and are sum-
marized in Table 5.6 where fX(⇠) is the probability density function of the random
variable X.

From the outset, variance has been known to be in general, inconsistent with
Stochastic Dominance and can only be used as a rule for projects with equal means
[35], [95]. With prospects that have unequal means, there is no known relationship
with their variances (or standard deviations) that imply stochastic dominance. How-
ever, in light of this new definition of consistency, it has been shown that for symmetric
random variables, variance is also consistent with SD with ↵ = 1. This relationship
however doesn’t hold for general, non symmetric variables. However, if we know a
common upper bound, h for the random variables (X � µX)/�X and (Y � µY )/�Y ,
then the variance is in general consistent with ↵ = 1/h.

The relationships for the Value-at-Risk and Conditional Value-at-Risk metrics
requre the concept of the dual function, F (�2), of the cumulative distribution function
and are examined in more detail in [80] and [81]. The connection between Stochastic
Dominance and some of the risk metrics discussed is illustrated in Figure 5-10
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Figure 5-10: The relationship of Stochastic Dominance with other objective functions

104



5.7 Compuational Cost of Stochastic Dominance

Implementing Stochastic Dominance on project-selection problems, while possessing
the advantage of including all preferences and being able to handle all the di↵erent
forms of uncertainty also comes with added computational cost. In Table 5.7, we
estimate the cost of four of the objectives: expected value, mean-variance, first and
second order stochastic dominance in order to give a sense of the relative computa-
tional burdens imposed by each method. In the analysis, N represents the number
of projects to be analyzed while m the number of samples that make up the outcome
distribution of each project. Thus if there are 20 possible projects for investment and
in the uncertainty analysis, we ran 1000 simulations for each project, then N = 20
and m = 1000. Our cost calculations also are done in terms of the number of ‘arith-
metic’ operations used to implement each method. An arithmetic operation includes
an addition, a square, a comparison, multiplication or division.

The analysis assumes that we have already generated the N ⇥m matrix that con-
tains the distributions for all the potential projects.The derivation of the expressions
are in Appendix B.

Method Number of arithmetic operations Relative magnitude
Expected Value Nm+ 3N

2 1

Mean Variance 4⇥Nm+ N(N�1)
2 5

FSD Nm+N logN +Nm logm+ Nm(N�1)
2 1000

SSD Nm+N logN +N(m logm+ m(m�1)
2 ) + Nm(N�1)

2 2000

Table 5.7: Comparison of the computational cost of implementing Stochastic Domi-
nance and other objectives

Figure 5-11 shows log-log plots for the expressions in the table.
The computational cost of implementing SD is perhaps one of the main reasons

why, after its invention in the early 1970s, it didn’t find its way into the mainstream
like the other methods (e.g. mean-variance) did. However, computing power has been
growing cheaper and cheaper over time as illustrated by Figure 5-12 from [22]2. As a
result, it is our expectation that the barrier to implementing the methodology on full
scale problems will continue to fall and will allow it wider acceptance in industry.

The computational cost of the SD method is not the only barrier to consider in
thinking about its implementation. In fact, it is often the case that the cost of running
the simulation required to generate the matrix of distributions costs far more than the
cost of running the SD algorithm. We illustrate this with the biomass-to-liquids case
study that will be discussed in full in Chapter 8. In this example, we have roughly
1000 decisions (N) and we run 1000 simulations for each decision in order to obtain
the matrix of distributions. In Table 5.8 we display the run times of the di↵erent
components of the framework

2The speeds shown represent the speeds for the fastest supercomputers. While we don’t expect
this to be the typical speed available to the individual/corporate designer, it at least illustrates the
trend in the growing amount of computing power available in the industry
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Figure 5-11: Plot of number of arithmetic operations with problem size for the dif-
ferent objectives

Component Runtime (seconds) Percentage of overall
Parameter simulation 0.02 0.01

Model run 137.90 93.18
SD analysis 8.01 5.41

Table 5.8: Breakdown of runtimes for di↵erent components of the biomass-to-liquids
uncertainty analysis framework

To account for some vagaries in computer runtime, we ran the procedure about 3
times and averaged the results. As we can see, the time required for the model simu-
lation vastly outweighs the amount of time required to run the stochastic dominance
algorithm, accounting for 93% of the computing time. Improving the speed of model
simulations - either by creating better screening models or implementing more e�-
cient methods for uncertainty propagation via the use of alternatives like Polynomial
Chaos Expansions (see [47], [38], [108]) may significantly improve the computational
challenges encountered.

In this thesis, we didn’t consider the use of dynamic uncertainty such as stochastic
processes and random walks) in the simulation of the uncertain parameters. The
inclusion of this will definitely add some extra burden on the cost, but, as can be
seen from Table 5.8, it will still likely be dwarfed by the computational requirements
of the model.
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Figure 5-12: Speed of fastest supercomputers over di↵erent years. Data from [22]

5.8 Stochastic Dominance and Project Selection

So far, we have demonstrated the utility of Stochastic Dominance as an analysis and
a screening tool but done much discussion on how we incorporate it into the process
of design and project selection. The goal of this section is to demonstrate how we can
combine the stage-gate approach to decision making with the reactor design problem.
We illustrate the procedure outlined earlier in Chapter 2 in Figure 5-13.

Gates are the points where projects advance to another level of analysis (indicated
by the vertical lines) while the portions between gates where the analysis of the
di↵erent projects takes place are called stages. Our stage-gate process begins with
three necessary inputs

1. Selection of a relevant metric (net present value, internal rate of return etc) on
which the projects will be scored

2. Simple process models that convert the material and financial inputs into the
relevant scoring metric.

3. A priori information/distributions for the relevant parameters

Our goal is to introduce Stochastic Dominance as a method for introducing pref-
erences in the decision problem. First order stochastic dominance, FSD, serves as a
basic screen and can be quickly used to eliminate inferior decisions in the set without
any knowledge of the risk preferences of the decision maker. After pruning, the set is
checked to see if a unique decision exists and if so, if it is acceptable. If an acceptable
decision is found, the process ends. If the solution is unacceptable, the design process
terminates. Time and resources are better spent in another design program.
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Figure 5-13: An illustration of the stage gate approach to design under uncertainty
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With multiple possible projects, we can further prune the set of options using
Second order Stochastic Dominance, if we know the class to which the decision maker’s
risk preferences belong (risk averse, risk neutral or risk seeking). The set of options
that result from this will usually be smaller than the FSD set. If it is a unique decision,
we can then decide to terminate or implement it. If not, we’ll seek more information
on the decision maker’s preferences and use that to further prune the set. This could
be in form of constraints (a certain tolerance for Value-at-Risk, variance etc) or could
be via the Almost-Stochastic Dominance restrictions where the ✏-parameter can be
determined. In the case where no knowledge or preferences is present, we can either
attempt to learn more about the preferences or advance the remaining projects to the
next stage for further analysis.

Once all the knowledge of preferences has been incorporated and we have filtered
out as much as we can with no unique process, the resulting projects advance through
the next gate (gate 2). Once projects advance through to the next phase, more time
and money is spent on refining the choices [116]. In this case, we could build better
models, further refine the parameters in the models by carrying out more detailed
experiments - say pilot plant studies - and possibly include other selection metrics
to help refine the decision. After this is done, we begin an analysis that is similar
in spirit to the ones described in the second stage and the process is iterated over as
needed until the final design is selected.

The crucial addition in our design approach is the utilization of Stochastic Dom-
inance as the proper screening metrics over alternative rules because these rules can
sometimes allow inferior projects to pass through.

5.9 Summary and case-studies overview

This chapter introduced and reviewed the relevant concepts and current ideas in
Stochastic Dominance. We examined the rules governing the di↵erent orders of
Stochastic Dominance, and used examples to illustrate how they are applied.

The next few chapters look at the implementation of the method on three di↵erent
case-studies: the design of a chemical reactor-separator system, the selection of a
crop to grow for biomass production and ultimately the design of a biomass-to-liquids
plant. In each of these case-studies we will be examining the performance of Stochastic
Dominance first as a screening tool for reducing the size of the feasible set of options
and comparing its performance with other objectives.

After generating the e�cient set, we will then proceed to analyze the e�cient
set in two ways: First we will look at di↵erent approaches to reducing the size of
the e�cient set. We will use two di↵erent techniques to accomplish this - the use
of Almost Stochastic Dominance (ASD) discussed and the repeat examination of
the feasible set using Stochastic Dominance with another metric. This approach is
illustrated in Figure 5-14.

The second way we analyze the e�cient set is to determine the key uncertainties
that have the biggest impact on the output uncertainty via a sensitivity analysis.
This is important as it allows us to determine the variables that will give us the best
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Figure 5-14: Using an alternative metric to prune the e�cient set. The intersection
of the two sets gives a reduced size set as, at most, the e�cient set is as big as the
smaller of the two di↵erent sets.

Figure 5-15: Using stochastic dominance with an implementation framework for an-
alyzing the e�cient sets
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‘bang for our buck’ if we want to reduce the outcome variability. In addition, once
more information is known, we can use it to generate a posterior distribution that can
ultimately and the process used iteratively until we can eventually make a decision.
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Chapter 6

Case Study 1: Design of a Reactor
Separator

In this chapter, we demonstrate the use of the di↵erent objective functions analyzed
so far on the design of a reactor-separator system for the production of a product
C from reactants. We highlight the di↵erent decisions that result from the di↵erent
metrics and show how we use the results of the analysis in determining the next steps
in the design process.

6.1 Problem Description

The problem is centered around the decision to produce one of 2 products, C or D.
C can be produced directly from a reactant A with simple first order kinetics i.e.

A �! C

while the D is produced from the combination of two reactants A and B via second
order kinetics i.e.

A+B �! D

In addition to the choice of product, there are two other choices that together
contribute to the decision to be made and these are

• Choice of reactor type: Continuous Stirred Tank Reactor (CSTR) or a Plug
Flow Reactor (PFR)

• Reactor capacity/volume

These choices are illustrated in Figure 6-1. The thick red arrow shows the three
choices that together constitute a decision i.e. the choice of product C, manufactured
via a CSTR and a particular reactor volume choice.

The basic design structure for the project is a reactor-separator system illustrated
(for the A to C system) in Figure A-1. The second case is illustrated in the Appendix
A.
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Figure 6-1: An illustration of the choices that constitute a project decision

F1

xA1

F2

xA2

F3

xA3

F5

xA5

F4

xA4

Reactor
Separator

Figure 6-2: Model of reactor-separator system for a single reaction
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Figure 6-3: Net Present Values for di↵erent volumes and di↵erent process choices. 1
and 2 represent the manufacture of C and D respectively

The metric chosen for the evaluation of each project is the net present value
(NPV). In order to analyze the decisions, we need to build technical and economic
models that show how the inputs (raw materials A and B) are converted to the desired
output (project NPV). These models are described in greater detail in Appendix A.
To keep the problem simple, we made a few assumptions that are highlighted below:

First we assume that the choices are independent and mutually exclusive (the
company ultimately wants to choose only one project for execution). We also as-
sume that there are no cost constraints associated with any choice - all financial and
demand constraints are included in the lower and upper bounds for the volume. In
the technical models, we have focused just on mass balances and have omitted energy
balances assuming costs can be adequatedly incorporated into the cost coe�cients for
the di↵erent stages. All of these were done in order to keep the system as simple as
needed so that an adequate understanding of the Stochastic Dominance methodology
is not lost in the complexity of the demonstrating examples.

6.2 Deterministic Analysis

With nominal values of the parameters for the problem we can evaluate each of
the projects deterministically and compare their performance. Parameter values for
the respective systems are given in Tables A.1 and A.2 in Appendix A. Figure 6-
3 compares the Net Present values for di↵erent reactor volumes for the di↵erent
decisions.

All the decisions show the NPV increasing as the volume increases largely because
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Figure 6-4: Internal rate of return for di↵erent volumes and di↵erent process choices.
1 and 2 represent the manufacture of C and D respectively

of the larger product output generated which translates to more sales. The CSTR
and PFR for production of D (labelled as ‘2’ in the plots) outperfom those for the
production of C using NPV. And we can also see that the CSTR for the production
of D outperforms that of the PFR for all the volumes considered. Thus, in the
deterministic case, using the net present value as the metric of choice, the decision is
simple - choose to produce D with a CSTR using a reactor volume of 4 m3. However
the story is a bit di↵erent when we use a di↵erent metric like the internal rate of
return, IRR as shown in Figure 6-4. Here, the CSTR configuration for product C
almost uniformly outperforms that of the others except for reactor volumes lower
than 2.4m3 where the PFR reactor for product C outperfomrs it. This example goes
to illustrate the point made in Section 2.3 about how the choice of the metric can
a↵ect the selection of the product. In the one case (NPV), the choice would have
unanimously been the CSTR for the production of D while in the other case, it would
have been CSTR for product 2.

Capital costs can also form one consideration for the selection of projects. We
illustrate the costs for the di↵erent projects in figure 6-5. In this case, we see that
the project with the lowest capital cost is the PFR for the production of C. We have
assumed that cost is not a consideration in this problem but if is and the company
has budget constraints, then the CSTR and PFR configurations for the production
of C now starts to look more attractive than those for the production of D.

In summary, while deterministic metrics can give concrete recommendations about
choices to select, it is important to recognize that these recommendations are a func-
tion of the metrics themselves and proper care should be taken to ensure that correct
metrics that represent the best approach for ranking the projects under consideration
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Figure 6-5: Payback period for di↵erent volumes and di↵erent process choices. 1 and
2 represent the manufacture of C and D respectively

are selected so that the best outcomes can be identified.
Thus, we see the importance of selecting the correct metrics when selecting among

projects.

6.3 Model analysis with uncertainty

While the preceeding section makes use of deterministic approach to analyze the
projects, we know that for real processes, there exists uncertainties in the parameter
values. We introduce uncertainty into the models by selecting the parameters that
we believed would most a↵ect the output sensitivity, namely the reaction rate and
the selling price of the product. We use lognormal distributions for the parameters
of interest and illustrate their distributions in Figure 6-6
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Figure 6-6: Distributions of the uncertain parameters for the CSTR and PFR and the selling prices of C and D
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Figure 6-7: Net Present Values for di↵erent volumes and di↵erent process choices,
with error bars to indicate the spread

When we include uncertainties in the distributions of the parameters, the decision
results from the deterministic section are no longer as crisp as illustrated in Figure
6-7.

The figure shows the plots of the expected values of the decisions with a the stan-
dard deviations around a few points emphasized. The width of the bars is equivalent
to two standard deviations - one above the particular point and one beneath. From
the figure, we see that the presence of uncertainty now makes the decisions that were
unreasonable now potentially viable. For example the production of D using a CSTR
with a capacity of 2.2m3. This, deterministically, was shown earlier to be superior
to all other options but we see that given the spread around its expected value, it
is possible that under some circumstances, even the CSTR producing C (the blue
curve) may generate a larger net present value.

We now turn to our developed framework to help with the decision.

6.3.1 Decisions from di↵erent uncertain objectives

Figure 6-8 below summarizes the di↵erent decisions made by the di↵erent metrics.
Di↵erent shapes (also coloured di↵erently) help to identify the di↵erent reactor-
product configurations and the particular volume choice is shown in the appropriate
shape above the volume scale.

There are two groups of outcomes - there are the single decision outcomes and
the multiple decision outcomes. The single decision outcomes are the expected value,
risk-area-ratio and the worst-case decisions. The expected value decision is to use a
CSTR with capacity of 4m3 producing D and the other two objectives recommend
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the production of C using a CSTR of volume 4m3.
For the multiple decision outcomes, there is a range of decisions that are recom-

mended. Thus, we see that the First Order Stochastic Dominance set contains 13
decisions in total, comprising 8 possible volume choices for production of D by PFR,
3 choices of producing D by CSTR and one each of producing C by CSTR and PFR.
The SSD solution contains 10 decisions in total - 6 for the production of D by PFR,
3 for its production using the CSTR and 1 for the production of C by CSTR. The
diagram for the CSTR can be similarly interpreted.
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Figure 6-8: Decision results for di↵erent objectives for the Reactor-Separator design problem
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Figure 6-9: Comparison of a Mean-Variance Decision and a Stochastic Dominance
Decision. The SD decision dominates the MV decision as its cumulative distribution
is entirely to the right of the MV decision

From the figure, we see that FSD does a fair job of screening the initial number
of designs - providing a reduction of about 67% in the size of the feasible set from 44
possible decisions to 13 decisions - without any need for the knowledge of the decision
maker’s risk preferences. Second order SD further reduces the FSD e�cient set from
13 decisions to 10 decisions. This was done by assuming the decision makers were
risk averse and demonstrates the nestedness of the SSD e�cient set.

Comparing the stochastic dominance sets and the mean-variance set, we see that
there are more than double the number of decisions present in the FSD set and almost
three times the number present in the SSD set. Notable in the mean-variance set is
the presence of the full list of decisions for the production of C by PFR. Many of
these decisions are superseded by decisions in the Stochastic Dominance set and as a
result can be misleading to decision-makers.

Take for example the decision to build a PFR with a volume of 3m3 to produce C.
This decision is absent from the Stochastic Dominance set but is present in the MV
set. The reason is because there is a design that supersedes this decision present in
the feasible set and no decision-maker will choose this. We expand on this in Figure
6-9.

In the figure, we see that the decision to produce C with a PFR has a cumulative
distribution given by the green curve. There is however another decision that dom-
inates it - which is the decision to produce C with a CSTR and a volume of 4m3.
This is even though both lie on the MV e�cient set. As such, it is possible for the
simple comparison of these two decisions on an MV basis to mislead decision makers.
(it will be good to plot the probability distributions of these two decisions as well).

122



This decision is the basic flaw of the MV approach as discussed earlier. Because the
variance (or standard deviation more accurately) penalizes both upside and downside
variance, a low variance (like the PFR decision) penalizes upside as well. But we
see that the larger variance of the CSTR decision contributes more to the upside.
Even though there is a downside, it’s not large enough to pull it into the lower NPV
numbers categorizing the PFR decision.

6.4 Convergence Issues

One challenge in applying the Stochastic Dominance framework to this problem is
the convergence of the size of the e�cient set as the number of Monte-carlo samples
of the uncertain parameters increase. Figure 6-10 demonstrates the variation in the
size of the e�cient set for di↵erent Monte-carlo runs.

In order to obtain the plots, we did the following; first we selected a number of
sample sizes over which we were going to run the analysis1 on the decisions. These
ranged from 100 samples to 100,000 samples, three orders of magnitude. For each
selected sample size, for example a sample size of 1000, we repeated the analysis a
specific number of times (100 times in our case) and in each case, recorded the number
of decisions in the e�cient set and the decisions in each e�cient set. These results
are what the figure displays.

Looking closely at the figure, we observe a number of things. For the mean
variance, there is a lot more fluctuation in the size of the e�cient set with smaller
samples 2 than for the larger one3. This is to be expected as will be demonstrated
from standard Monte-carlo convergence analysis shortly.

For First order and Second order Stochastic Dominance, the story is a little di↵er-
ent - at smaller sample sizes, there is a tendency towards a smaller size of the e�cient
set (close to 3) while at larger e�cient set sizes there is a tendency toward larger
e�cient sets (10 or more). This is more clearly illustrated in Figure 6-11

As can be seen, while the size (and variation) of the mean-variance e�cient set
starts out large and eventually settles into a constant number with more samples (25
options), the number of decisions in the FSD and SSD e�cient sets starts out much
smaller and then grows, with a large fluctuation as well.

The main reason for this is the convergence of the tails of the distributions com-
pared with the convergence of the central portions of the distributions - like the mean
and the standard deviation. Figure 6-12 shows the convergence of the mean and the
variance of the distributions of some decisions. As can be seen, most of them con-
verge after 10,000 samples which explains the stability of the e�cient set from 20,000
samples upwards

The convergence of the tails is quite di↵erent as is illustrated in the Figure 6-
13 where we plot a number of percentiles for the same decisions as the mean and
standard deviation.

1Note that ’analysis’ here refers to determining the e�cient sets of the di↵erent objectives
2the range is from 21 to 34 decisions for a sample size of 100
3for 100,000 samples, there are essentially consistently 25 decisions in the e�cient set
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Figure 6-10: Histogram of the number of decisions in the e�cient sets for di↵erent
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Figure 6-11: Box plots of the di↵erent e�cient sets
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Figure 6-12: Convergence of Mean and Standard deviation for a few decision options
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Figure 6-13: Convergence of di↵erent percentiles for a few decisio options
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Reactor Type Product Volume (m3)
CSTR D 4.0
PFR D 4.0
PFR D 3.8
PFR D 3,6
PFR D 3.4
PFR D 3.2
PFR D 3.0
CSTR C 4.0

Table 6.1: Decisions in the SSD e�cient set using the NPV metric

In the figure, the minimum sampled NPV is a proxy for the zeroth percentile. The
plots as such show the convergence of the zeroth, 0.1th and the 1st percentile. There
is a visible increase in the convergence across all three but it is markedly di↵erent from
that observed with the mean and the variance. This lack of convergence in the tails of
the distribution partly accounts for the variation in the size of the e�cient sets. First
order Stochastic Dominance involves comparing values at each percentile value while
Second order Stochastic Dominance involves comparing the integrals of values below
each percentile value. With fluctuations in the sample values, it is possible for the
percentile for a decision, A, to be larger than that of B, even though the ’true’ value
(as will be obtained in the limit of infinite samples - or su�ciently large samples) is
lower.

6.5 From e�cient sets to decisions: Pruning the
e�cient set

Even in the absence of fluctuations in the Stochastic Dominance e�cient sets, it
isn’t common that the set will contain a single decision that can be implemented
directly. In such a case, it becomes necessary to further prune the e�cient set to a
more acceptable number. As highlighted in the previous chapter, we demonstrate the
use of other metrics and the use of the Almost Stochastic Dominance framework in
achieving this goal.

The use of other metrics - Once second order Stochastic Dominance has been
used to reduce the e�cient set to a manageable size, it is possible to use other metrics
to further pare down the set to arrive at a design decision. For example, as we
discussed earlier, the Net Present Value is but one metric that can be used to measure
profitability. We can run SSD analysis on the e�cient set using another metric like
the internal rate of return to see what reduction there is.

The SSD e�cient set in this case contains 8 decisions (from an initial set of 44) and
this was obtained using 10,000 samples of the uncertain variables. These decisions
are represented in the Table 6.1.

128



Reactor Type Product Volume (m3)
CSTR D 4.0
PFR D 4.0
CSTR C 4.0

Table 6.2: Decisions in the FSD e�cient set using the IRR metric on the NPV, SSD
e�cient set

Reactor Type Product Volume (m3)
CSTR C 4.0

Table 6.3: Decisions in the SSD e�cient set using the IRR metric on the NPV, SSD
e�cient set

We now analyze these decisions using Stochastic dominance on the uncertain
internal rates of return. The decisions left in the FSD and SSD sets are presented in
the tables below. With this metric, we were able to make a decision using SSD on the
8 decisions that were left. Using FSD gave us 3 decisions, with SSD finally reducing
that decision to 1.

An interesting observation in this case is that the SSD set resulting from the ap-
plication of the IRR metric on the initial set (all 44 decisions) is the same as applying
it on the smaller e�cient set that resulted from applying Stochastic Dominance using
the NPV metric. This is not surprising as the two metrics are not entirely indepen-
dent. This will not always be the case though - especially when the metrics are quite
di↵erent. In those cases, it is possible that the order in which the di↵erent metrics
are applied leads to di↵erent decisions. This is one of the dilemmas of lexicographic
decision making discussed in [70] and the approach should be used with caution.
When tradeo↵ coe�cients between the di↵erent metrics are known, it is best to use
the combined weighted average metric rather than applying the metrics in sequence.

Almost Stochastic Dominance The rigour of Stochastic Dominance means that
even in cases where one distribution virtually dominates another, except in a region
of very low probability, both decisions will be present in the e�cient set. As an
example, consider two decisions in the e�cient set whose cumulative distributions
are represented in the Figure 6-14

The distributions represent the choices of producing D with a CSTR (blue) and
a PFR (green) both with a reactor volume of 4m3, and both of which are in the
Second order Stochastic Doiminance e�cient Set (using the NPV metric). However,
it is initially unclear from Figure 6-14 why the PFR decision is in the e�cient set
given that the CSTR’s distribution seems to lie entirely to the right of the PFR
decision. The complete picture is seen more clearly near the low probabilities as we
demonstrate by the zoomed in image in Figure 6-15.

Here we see that near the tails, the (empirical) distributions begin to cross, leading
to no clear dominance in the two. decisions. However, if the scale of the y-axis is
examined, we see that this crossing over occurs around a cumulative probability less
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Figure 6-14: Cumulative distributions of the di↵erent decisions to produce D with
CSTR and a PFR

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2
0

1

2

3

4

5

6
x 10−3

NPV ($MM)

C
um

ul
at

iv
e 

D
is

tri
bu

tio
n

 

 
CSTR, D
PFR, D

Figure 6-15: Tail cumulative distributions of the di↵erent decisions to produce D with
CSTR and a PFR

130



−7 −6 −5 −4 −3 −2 −1
1

2

3

4

5

6

7

8

log10 ε

N
um

be
r o

f d
ec

is
io

ns
 in

 e
ffi

ci
en

t s
et

Figure 6-16: Decrease in the size of the e�cient set with the ASD parameter, ✏

than 0.01, the first percentile of the distribution. This region represents a set of NPVs
that have a probability of less than 1% of occuring. While there are utility functions
for which the PFR decisions will be preferred to the CSTR decision, these utility
functions will lead to the acceptance of gambles that most people will find untenable
such as the example given in [62].

As explained in the previous chapter, Almost Stochastic Dominance, helps to
eliminate some of these decisions, however it depends on the value of a particular pa-
rameter, ✏. The lower bound for this parameter is zero, at which point it is equivalent
to the regular Stochastic Dominance. Ruszczynski and Lizyayev [66] give a physical
meaning for the parameter when used in the ✏-ASSD sense as ‘the smallest value of
the mean return of a random variable that needs to be added to a random variable,
X in order for it to dominate another, Y’. We screen the decisions in the SSD e�cient
set using di↵erent values of ✏ and observing the reduction of the e�cient set. These
are presented in Figure 6-16.

The figure is a semi-log plot where the logarithm of ✏ (in base 10) is plotted against
the number of decisions in the e�cient set. The number of decisions begins with the
total number of decisions in the SSD e�cient set, 8, and then steadily drops until
✏ = 5 ⇥ 10�3 when only a single decision is left in the e�cient set. This decision
is the decision to produce D with a CSTR of volume 4m3. The very small value
of epsilon shows that most decision makers (5 ⇥ 10�3) shows that most risk-averse
decision makers will be easily satisfied with this decision. In this case however, and in
almost every case where ASSD is used to reduce the number of decisions to a single
outcome, the final decision left in the e�cient set will always be the decision with
the largest expected value, thus corresponding with the decision that results from
expected value maximization.
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Note that this decision is di↵erent from the decision that resulted earlier when we
used another metric to pare down the SSD set. In general, this will be the case and as
such, it is recommended that the reduction of e�cient sets should be done in tandem
with the decision maker as the preferred approach to reducing the size of the e�cient
set will inform the analyst on the decision maker’s particular preferences, resulting in
the recommendation of a decision that will be easily accepted.

Use of hierarchical models It is also possible to further refine the e�cient set
by a refinement of the mathematical models used to run the analysis. Kasas et al.
[53] illustrate with deterministic metrics how using models of increasing accuracy can
help improve the trade-o↵s made in decision making, in e↵ect reducing the size of the
e�cient set. We didn’t investigate this approach here, but for completeness mention
its use.

6.6 Conclusions

This chapter examined the design of a reactor-separator in the absence and presence
of uncertainty. The key design variables were the choice of reactor, volume and the
particular product to be made as this a↵ected the reaction kinetics. The uncertain
parameters that were analyzed were the reaction rate and the product selling price as a
preliminary sensitivity analysis had shown both parameters to be the most important.

The best design in the deterministic case turned out to be a CSTR geared towards
the production of D (implying second order kinetics) with a volume of 4m3. This
design also turned out to be the best expected value solution as well in the presence
of uncertainty. There were 10 decisions in the SSD set although the number was found
to vary as we changed sample size since there was a lot of the crossing over in the
tails of the cumulative distributions. This issue was identified using Almost Second
order Stochastic Dominance to analyze the e�cient set as the size of the set dropped
very quickly with minor changes in ✏, with the expected value decision remaining as
the sole decision while ✏ was still quite small (order of 10�3).

The use of an alternative metric was also able to reduce the e�cient set down
from 10 decisions to three, with the expected value decision under the NPV scenario
still remaining in the set. Thus, it seems that in this particular case, the use of the
expected value solution will be the best decision to pick.

This study illuminated some of the issues that can arise with the use of Stochastic
Dominance for project screening - particularly the fluctuations that can arise in the
tails of distributions and how they can a↵ect the size of the e�cient set - an issue
that isn’t solved by the use of more samples. The ASSD approach thus comes in
handy in eliminating decisions present in the e�cient set because of tail fluctuations
and should be used whenever such situations arise.
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Chapter 7

Case Study 2: Growing energy
crops

This second case-study demonstrates the use of Stochastic Dominance on the selection
of the crop mix and land area for a farmer interested in growing renewable energy
crops for biofuel production. We first develop the model and solve it deterministically
before including uncertainty. This problem is the first part of the larger problem of
designing a plant that converts biomass to liquid fuels and potentially other products.
As analyzed in the first chapter, there are three main decisions to be made.

1. The choice of raw materials/feed to be used

2. The processing pathway

3. The product mix

In general there will be some interaction between the three design stages as it is
easy to see how the choice of any one of the stages will a↵ect the rest. We address
some of this in the next case-study where we analyze the system-wide design of the
biomass to liquids plant. In this chapter however, we will focus on the initial problem
of selecting the biomass feedstock for the plant assuming that, to first order, the
decision can be separated from the rest of the plant design. This is not a poor
initial assumption because the generation of products from biomass often requires
that biomass be first converted to syngas via the gasification process. Gasification
presents a natural decoupling point for the feed selection problem from the design -
since the rest of the plant design can also be analyzed on the basis of syngas generated
from the plant. The interaction linking the feed to the rest of the plant via the syngas
lies in the amount of clean-up that has to be done for the syngas based on the type
of feed. But syngas clean-up is a small fraction of the overall cost of the plant that,
again, to first order, can be neglected and considered in a later, more detailed analysis.

7.1 Problem description and model development

First generation biofuels were largely made from corn and sugarcane but a number of
reasons have led to the need for alternative sources for the manufacture of biofuels.
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The first is the food-fuel competition which led to an increase in prices for food,
especially corn, as supply became scarce due to the alternative demand source. The
second is the debate over the fossil fuel neutrality of corn-ethanol with respect to
fossil fuel as some argue that it is consumes more fossil fuel in its creation than it
replaces while other studies show it to be mildly positive, issues which are explored
in mroe detail by Johnson [50].

These two reasons have led to the search for new crops and carbon sources from
which biofuels can be made that have a greater energy ratio and don’t compete with
food supply. Of the many alternatives that have been proposed, four of them have
been prominent - switchgrass, miscanthus, willow (an example of a short rotation
woody crop) and corn stover - and we will focus on them in our analysis.

The decision problem is that of a farmer deciding to be a supplier of one (or more)
of these energy crops. His decision is constrained by his initial overall capital (how
much he has or can raise), and, given the set up costs (all done on a per unit area of
land cultivated), this a↵ects the size of land he can purchase and subsequently will
determine the net present value of his returns.

In order to determine which crop he should grow, we first build a simple structural
model that relates the main factors and parameters to the outcome we care about -
the net present value. Our model couples all costs incurred in the growing process but
uniquely separates out tranport costs which have been found to be a very significant
factor in farm/crop growth [17].

First, we assume that the revenue from a crop can be given by the relationship

Z = p⇥ Y ⇥ A (7.1)

where Z is the return from the crop, p is the selling price of the crop, Y is the crop
yield per unit farm area and A is the total farm area harvested. The figure below
shows the relationships in detail

For the elemental area (in blue) we have

dA = rdrd� (7.2)

and as a result we get

dZ = pY rdrd� (7.3)

which upon integrating yields

Z =

Z 2⇡

0

Z R

0

dZ

= Y p

Z 2⇡

0

Z R

0

rdrd�

Z = pY ⇡R2 (7.4)
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Figure 7-1: Schematic digaram for farm model

where R is the radius of the farmland. The total cost of growing crops is similar
to the above and is given by:

Growthcost = cost⇥mass

= c⇥ Y ⇥ ⇡R2 (7.5)

Transportations costs on the other hand are given by

T = ct ⇥ Y ⇥ A⇥D (7.6)

ct is the transportation cost per unit distance per unit mass of crop and D is the
total distance travelled. For the elemental area shown, we have that

dT = ct ⇥ Y ⇥ rdrd�⇥ 2r (7.7)

Which upon integrating yields

T =

Z 2⇡

0

Z R

0

dT

= Y ct

Z 2⇡

0

Z R

0

2r2drd�

=
4⇡ctY R3

3

(7.8)

Capital cost, we model as a function of the area of the farm (essentially land costs
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and preparations) and this is given by

Capitalcost = costperarea⇥ totalarea

= D ⇥ ⇡R2 (7.9)

where D is the establishment cost of the crop.
Furthermore, we assume that there is a total budget, B, available for the initial

capital investment. Given the budget, there is a constraint on the amount of farmland
that can be purchased i.e.

D⇡R2  B

0  R 
✓

B

D⇡

◆ 1
2

(7.10)

This budget constraint translates to a maximum radius, Rmax, which can be cal-
culated for each crop once the initial investment cost, Di, is known.

The investment/establishment cost is a one time cost (a capital expense) whereas
revenue and crop production cost terms (as well as the transportation costs) are
recurring annual items. In order to combine the equations, we either need to annualize
the capital cost of the farm or sum the discounted revenues and costs of the farm over
the lifetime of the crop. The crops all have a varying lifetimes so this as to be
accounted for as well.

Miscanthus and willow (our chosen short rotation woody crop) both have a lifetime
of about 20 years while switchgrass has a lifetime of about 10years. We gave the corn
a lifetime of 10 years as well. We thus levelled the returns of all crops to the lifetime
of 20 years - but included a factor that accounted for reinvestment costs for corn
stover and switchgrass after year 10. We assume a constant average yield over the
lifetime of the farm for each crop which allowed us to use a single factor to account
for the net present value of the crop returns. We discount at a risk free return of 5%
per year.

Thus, with a lifetime of 20 years, the discount factor is

fd =
20X

k=1

1

(1 + r)k
(7.11)

For the capital cost correction, we assume that whatever the amount was invested
in the beginning for the crops with a lifetime of 10 years will be spent again to account
sustain the current farm size. Thus, we added a capital cost discounted over 10 years
to account for this. Thus switchgrass and corn stover have capital cost multipliers
given by

finv = 1 + (
1

1 + r
)10 (7.12)

Since the lifetime of miscanthus and willow are both 20 years, their investment
factor is 1 (since there would be no reinvestment done). With these, we can now
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write the mathematical model of the farmer’s problem as

max
R

⇢
fd((p� c)Y ⇡R2 � 4⇡ctY R3

3
)�D⇡R2(finv)

�

st. 0  R 
✓

B

D⇡

◆ 1
2

(7.13)

Equation (7.13) helps the farmer determine the optimal size of the farm for a
particular crop. Since R is the only variable, we can use the techniques of calcu-
lus to obtain the optimum decision and the corresponding net present value. We
will temporarily assume the solution lies at an interior point and thus neglect the
complications that arise with including boundary restrictions.

At the optimum we have

dNPV

dR
= 0 = 2fd(p� c)Y ⇡R� 4 ⇤ fdctY ⇡R2 � 2D⇡Rfinv (7.14)

0 = 2(p� c)fdY � 4fdctY R� 2Dfv (7.15)

which gives the optimal deterministic radius as

R =
Y (p� c)fd �Dfv

2fdctY
(7.16)

Since R cannot be negative, for there to be any investment at all in the farm, we
must have, from equation (7.16) that

Y fd(p� c)

fvD
� 1 (7.17)

which, in economic terms, translates to the fact that the total discounted returns
from the farm must exceed the initial capital investement.

d2NPV

dR2
= �4ctfdY  0 (7.18)

as required by the necessary conditions for a maximum. For a farmer that faces
a number of potential crops to grow from which he has to chose one (and only one),
the decision problem can be written as

max
R,i

⇢
(pi � ci)Yi⇡R

2 � 4⇡ctYiR3

3
+Br �D⇡R2(1 + r)

�

st. 0  R 
✓

B

D⇡

◆ 1
2

(7.19)

where i is the index of each crop and n the total number of crop options the farmer
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has.

7.2 Crop selection under certainty

We solve this problem using data given in Table 7.1 for the four energy crops intro-
duced at the beginning of the section- switchgrass, miscanthus, willow and corn stover.
We show the plot for miscanthus in Figure 7-2 and that for all four together in Figure
7-3. For all the crops, we used a transportation cost of about $0.25/ton/km. The
establishment costs for the di↵erent crops were obtained from a survey of literature.

Prices are, where it was possible to determine, how much can currently be obtained
from the sale of the crop while costs were estimated to be the total non-establishment
and transportation costs incurred in growing the crop.

Corn stover establishment costs were determined from the establishment costs of
corn and dividing by two since the corn crop yields about 50% grain and 50% stover.
Since corn averages about 3-5 tons per acre(about 7.5-15 tons per hectare) , a stover
harvest rate of about 30% of the standing mass is used since the stover usually acts as
a replenishment for the soil after harvest. Selling price was estimated as an average
of the ranges given in and the cost of growing estimated the same way.

Of all the crops though, establishment costs for Miscanthus varied the most - rang-
ing from $1000 to about $2500. We used the average $1750 to run the deterministic
analysis.

Crop Price ($/ton) Cost ($/ton) Yield (tons/ha) Establishment ($/ha)

Switchgrass 65 60 15 450
Miscanthus 65 55 25 1750
Willow 65 55 14 2000

Corn Stover 50 67 5 350

Table 7.1: Data for the farmer problem

Parameter Value Unit

Budget, B 75 ⇥ 106 $
Risk free rate, r 5 %

Transportation cost, ct 0.25 $/ton.km

Table 7.2: General farm data

As we start out from smaller radii and move out to large ones, we see a rise in
profitability because the marginal revenue obtained from adding each additional bit
of land more than compensates for the increasing marginal transportation cost until
the optimum distance where both are equal. Beyond this distance, the extra cost
incurred on transporting the crops exceeds the marginal revenue and this gives rise
to the decreasing profitability which continues to fall until the maximum distance
(determined by the budget constraint is reached.
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Figure 7-2: Farm profit as a function of radius for Miscanthus

As can be seen from Figure 7-3 the peaks are all di↵erent as well as the range
of the farm radii available to farmer. The table below gives the results for all the
crops together with their respective annualized profits. from the table, it can be seen
that miscanthus provides the largest profitability and the most amount of biomass
generated for the plant - almost 500,000 tons per year. This is followed by corn stover
(in terms of profitability) and then by switchgrass and finally by willow. Given the
data that we currently have, there is no radius for which the willow crop is profitable
and as such it will be dropped out of consideration.

Thus, for the deterministic problem, with the four choices of the crops and a net
present value criterion for determining profitability, the farmer will choose to grow
switchgrass and will do so on a farm with radius 7.8km and will expect to provide
about 500,000 tons of biomass per annum to the farm.

Crop Max Radius (km) Opt Radius (km) Profit (MM) Biomass (ktons)

Switchgrass 23.03 2.17 20.56 748
Miscanthus 11.68 7.76 1.80 679
Willow 10.92 0 0 0

Corn Stover 26.12 13.94 16.05 440

Table 7.3: Optimum farm radii and annual profit for the di↵erent crops
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Figure 7-3: Profit as a function of radius for all crops

7.3 Crop selection under uncertainty

The analysis presented above is for the case where all the parameters defining the
problem are known with certainty - an idealized scenario. In reality, these parameters
are known to vary and the real farmer will have to make decisions regarding the crop
to grow in the presence of uncertainty. The same base structural model is used for the
uncertain case - but the parameters are now allowed to vary. Most of the variation was
chosen to be uniform as the literature for a lot of these parameters is quite uncertain.

Information about the the parameters vary quite a bit in literature given that the
growth of many of these crops is still in the research phase and the locations of farms
are spread out geographically - leading to soil, weather and economic variations. To
simplify the analysis, we chose five of the variables to be uncertain - the growth cost
and selling prices of the di↵erent crops, the transportation costs, the yields and the
establishment costs. All the distributions are constructed from sources in literature.
We also assumed independence of the di↵erent uncertain variables. Furthermore,
we assumed that the parameters of the problem don’t change with time i.e. the
distributions are static.

For all the variables except the yields, we assumed simple uniform distributions
with the spread given in Tables 7.4, 7.5, 7.6 and 7.7. For the yields, we used uniform
distributions for corn-stover and willow. A triangular distribution was constructed
for switchgrass yields and a modified uniform distribution was used for the yields of
miscanthus. The histograms from 10,000 samples of the miscanthus and switchgrass
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Figure 7-4: The histogram of yields for miscanthus

Parameter Distribution Data Units

Selling Price Uniform [65, 75] $/ton
Growth cost Uniform [55,65] $/ton

Establishment cost Uniform [350, 550] $/ton
Transportation cost Uniform [0.1, 0.5] $/ton.km

Yield Triangular [6, 15, 25] ton/hectare

Table 7.4: Parameters for Switchgrass

yields are displayed in Figures 7-4 and 7-5.
Each decision consists of a crop to grow and the farm radius. Since the farm radius

is a continuous variable, we discretize it first in order to use the Stochastic Dominance
algorithm. Like we did with the deterministic case, we determine a maximum farm
radius based on the budget and the capital cost per unit area of investment. The
farm radii for each crop is then obtained by selecting 21 evenly spaced points between
the maximum and minimum farm radii (both included). For each choice of a crop
and a farm radius, the uncertain parameters are then propagated through the model
to get the distribution of the net present value for the decision. These distributions
are then compared using the various metrics presented in Chapter 2 and Chapter 5.
We present the results of the decision analysis in the Table 7.8.

Because the First order Stochastic Dominance e�cient set contains the decisions
in the second order stochastic dominance set, we include in a separate table the
decisions present in the FSD set that are not in the SSD set. In addition, we include
the results from the use of single objectives in Table 7.10.

One thing we see is that the SSD approach does a decent job of cutting down
the number of decisions in the feasible set. While First order Stochastic Dominance
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Figure 7-5: The histogram of yields for switchgrass

Parameter Distribution Data Units

Selling Price Uniform [60, 70] $/ton
Growth cost Uniform [50,60] $/ton

Establishment cost Uniform [1000, 2500] $/ton
Transportation cost Uniform [0.1, 0.5] $/ton.km

Yield Modified uniform [6, 15, 25] ton/hectare

Table 7.5: Parameters for Miscanthus

Parameter Distribution Data Units

Selling Price Uniform [60, 70] $/ton
Growth cost Uniform [50,60] $/ton

Establishment cost Uniform [1500 2500] $/ton
Transportation cost Uniform [0.1, 0.5] $/ton.km

Yield Triangular [6, 15, 25] ton/hectare

Table 7.6: Parameters for Willow

Parameter Distribution Data Units

Selling Price Uniform [60, 70] $/ton
Growth cost Uniform [43,60] $/ton

Establishment cost Uniform [350, 550] $/ton
Transportation cost Uniform [0.1, 0.6] $/ton.km

Yield Triangular [6, 15, 25] ton/hectare

Table 7.7: Parameters for Corn Stover
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Crop Radius (km) Crop Radius (km)
Miscanthus 0.58 Miscanthus 7.00
Miscanthus 1.17 Miscanthus 7.59
Miscanthus 1.75 Miscanthus 8.18
Miscanthus 2.34 Willow 0.55
Miscanthus 2.92 Corn Stover 1.31
Miscanthus 3.50 Corn Stover 2.61
Miscanthus 4.09 Corn Stover 3.92
Miscanthus 4.67 Corn Stover 5.22
Miscanthus 5.26 Corn Stover 6.53
Miscanthus 5.84 Corn Stover 7.84
Miscanthus 6.42 No Crops -

Table 7.8: Second order Stochastic Dominance e�cient set

Crop Radius (km) Crop Radius (km)
Switchgrass 1.15 Corn Stover 9.14
Switchgrass 23.03 Corn Stover 11.75
Miscanthus 8.76 Corn Stover 20.89
Miscanthus 9.34 Corn Stover 22.20
Miscanthus 9.93 Corn Stover 23.51
Miscanthus 10.51 Corn Stover 24.81
Miscanthus 11.10 Corn Stover 26.12
Miscanthus 11.68 Corn Stover 10.45
Willow 1.09 - -

Table 7.9: Additional decisions present in the FSD e�cient set absent from the SSD
set

Objective Crop Radius (km)
Worst-case No crops -

Expected value Miscanthus 8.18
Risk-Area-ration Miscanthus 7.59

Table 7.10: Decisions from the single objectives
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cuts down the number of decisions to about half the original (44 instead of 84 in the
feasible set), the SSD approach further eliminates half of that, reducing the FSD set
to about half its original size. The mean-variance e�cient set is virtually identical to
the SSD set for this example 1.

The predominant decisions in the e�cient sets are those of miscanthus and corn-
stover for di↵erent farm radii. This is not surprising since the deterministic approach
shows that the other two crops - switchgrass and willow - are either profitable at
very small radii (switchgrass), or not at all (willow) with. Switchgrass interestingly
is e↵ectively out-competed by miscanthus. This result can be partially attributed to
the prices and costs we assumed.

If we, for example assume that a farmer is able to charge the average premium of
$10 over growth costs then we have both the deterministic and uncertain plots change
to give the results in Figure 7-6 and Table 7.11
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Figure 7-6: Farm profit as a function of radius for Switchgrass

We see that the SSD set changes quite dramatically with the modification of the
price of switchgrass. This is not surprising as sensitivity results show that the prices
of the crops have a strong e↵ect on the profitabiity and this will be discussed in more
detail in the next section.

Also, save for one decision (crop and radius), the mean-variance set is identical to
the SSD set - an outcome that is di↵erent from the results of the previous chapter.
One reason for this could be that the distributions were fairly symmetrical about
the mean and so penalizing spread (variance/standard deviation) is the similar to

1Virtually, because the only decisions missing are the options to not plant any crops as well as
the decision to grow the Willow crop with a farm radius of 0.55km.
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Switchgrass Miscanthus Willow Corn Stover
11.52 0.58 0.55 2.67
10.36 - - -
9.21 - - -
8.06 - - -
6.91 - - -
5.76 - - -
4.61 - - -
3.45 - - -
2.30 - - -
1.15 - - -

No crops - - -

Table 7.11: Second order Stochastic Dominace e�cient set with the assumption of a
change in the price of switchgrass

Crop Radius (km)
Miscanthus 4.09
Miscanthus 4.67
Miscanthus 5.26
Miscanthus 5.84
Miscanthus 6.42
Miscanthus 7.00
Miscanthus 7.59
Miscanthus 8.18
Corn Stover 2.61
Corn Stover 5.22

Table 7.12: Decisions left in the final ASD reduced set

penalizing the downside risk. When such is the case, as we saw in Chapter 5, we
know that both methods can be virtually identical.

7.4 From e�cient sets to decisions

Like the previous chapter, given the size of the e�cient set (20 decisions) and the
significant uncertainty still inherent in it, we explore possible actions that can proceed
from the preceeding analysis.

Almost Stochastic Dominance As we did in the previous chapter, we used the
ASD framework to try to reduce the size of the e�cient set. Figure 7-7 shows the
result

As we can see, the size of the reduced e�cient set is still relatively large compared
to the original set, with only about 55% reduction achieved (from 22 to 10 decisions).
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Figure 7-7: Change in the size of the e�cient set with using ASD with di↵erent values
of ✏

Crop Radius (km)
Miscanthus 0.58
Corn Stover 1.31

Willow 0.54
No Crops -

Table 7.13: SSD e�cient set for the profitability index metric

The decisons that comprise the final set are given in Table 7.12. As we see, Miscanthus
still dominated the crops present in the set, accounting for 8 out of the 10 decisions
in there.

Alternative metrics Net present value, as we saw, is but one metric that can be
used to decide between alternatives. We illustrate the use of the Profitability index as
a second alternative for reducing the size of the e�cient set. The profitability index
is defined as

PI =
Profit

Capcost
(7.20)

To do this we run the uncertain analysis using the di↵erent metric and pick the
decisions that lie at the intersection of the two SSD e�cient sets. The table below
shows the e�cient sets that result from the application of the SSD procedure to the
profitability index metric is given below

The challenge with this metric (and many ratio metrics) is that they tend to favour
small - medium investments (cite reference). From the analysis and a comparison with
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Crop Price Cost Yield Transportation cost Establishment cost
Switchgrass 0.36 0.36 0.15 0.20 0.02
Miscanthus 0.28 0.28 0.15 0.03 0.24
Willow 0.34 0.34 0.05 0.03 0.21

Corn stover 0.20 0.58 0.06 0.15 0.04

Table 7.14: Averaged total sensitivities for the various parameters determined for
each crop

Parameter Switchgrass Miscanthus Willow Corn stover
Selling price (old) [60, 70] [60, 70] [60, 70] [60, 70]
Selling price (new) [65, 70] [60, 65] [65, 70] [60, 65]
Growth cost (old) [55, 65] [50, 60] [50, 60] [43, 60]
Growth cost (new) [60, 65] [55, 60] [50, 55] [50, 60]

Table 7.15: Table of parameters assumed for ‘new information’ entering the e�cient
set. Units for data are in $/ton

the original SSD e�cient set in Table 7.8 we see that not much reduction in the size
of the e�cient set is obtained, unlike the previous case study. Thus, we can’t always
rely on using alternative metrics to reduce the e�cient sets.

Experiment design and uncertainty reduction As introduced in the Chapter
3, one of the big uses of uncertainty propagation and analysis is the determination of
the uncertainty drivers of a problem with an eye to reducing them - in order to aid
decision making. We carried out such an analysis on the uncertainties in the inputs
and the results are given in Table 7.14, a table that shows the average sensitivities
for the di↵erent crops and for the di↵erent parameters. This averages are taken over
the possible ranges of the radius that was allowed by the budget.

In general, the crop selling price (amount the farmer expects to receive from the
sale of the crop) and growth cost are the parameters to which all the crops are most
sensitive to while the remaining three parameters vary in order of importance depend-
ing on the crop. For miscanthus and willow, the establishment cost dominates the
yield and the transportation costs for importance while for corn stover and switch-
grass, there is a greater sensitivity to transport costs than establishment cost and
yield.

So from Table 7.14 we see that the selling prices and the growth costs are, on
average, the biggest drivers of the uncertainty of the two crops - miscanthus and corn
stover - that form the bulk of the decisions in the e�cient set. Knowing this means
that it may be helpful to explore ways to reduce the uncertainties in these decisions.
We explore this a bit by assuming that we are able to reduce the uncertainties in
some of those parameters to distributions resembling. The new parameters are given
in Table 7.15 with the resulting e�cient set given in table ??

The use of new information results in a significant reduction of the SSD, elimi-
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Crop Radius
Miscanthus 2.34
Miscanthus 1.17
Willow 0.55

Corn Stover 6.53
Corn Stover 5.22
Corn Stover 3.92
Corn Stover 1,31
No crops -

Table 7.16: Resulting SSD set upon new information reducing the size of the e�cient
set

nating a number of decisions in the original set. While it doesn’t reduce the e�cient
set to a singleton decision (easiest to implement), it advances the analysis by further
reducing the number of decisions left in the e�cient set.

7.5 Conclusions

This case study focused on the problem, from a farmer’s perspective, of the best
renewable energy crop to grow and on what farm size to grow it on to yield maximum
value to the farmer. We analyzed the problem both deterministically and in the
presence of key uncertainties in some of the parameters a↵ecting the crop returns
- in particular the establishment costs, the yield, selling price, cost price and the
transportation cost.

In the deterministic case, it was found that the best decision was to grow Miscant-
hus on a farm radius of about 7.8km. This was despite the rather high establishment
costs of miscanthus as the combination of lower growth costs and its high yield and
long lifetime contributed to overcoming this barrier. In the presence of uncertainty,
Miscanthus still retained its dominance as the crop to grow as 14 of the 22 decisions
in the SSD e�cient set were all Miscanthus choices. The farm size did vary quite
a bit within the Miscanthus set, ranging from a low of 0.6 km to a high of 8.2 km.
Larger farms produced better NPVs in the best times but did worse in poorer times
and it is in the selection of this variable that the particulars of the decision maker’s
risk profile may be needed.

The SSD e�cient set and the mean-variance set were nearly identical, illustrating
that in this case, the advantage to using SSD wasn’t nearly as big as that in the
previous study.

Sensitivity analyses showed that the price and the yields were the biggest influ-
ences on the uncertainty in the output and changing the price of switchgrass made a
big di↵erence in the composition of the SSD e�cient set. In modelling the e↵ect of
new information entering the set via the reduction of the variances of the inputs, we
were able to illustrate a reduction in the size of the e�cient set.
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Variable Sources
Yield [61] [83] [85] [56] [74] [115] [119]

Establishment cost [32] [6]
Selling price and growth cost [83] [1]

Table 7.17: Data sources for the Switchgrass

Variable Sources
Yield [118] [56] [73]

Establishment cost [6] [26]
Selling price and growth cost [2] [118][56]

Table 7.18: Data sources for Miscanthus

Almost stochastic dominance was not as e�cient in reducing the size of the e�-
cient set as the previous case study as, after the analyis, we still had about half the
original decisions present in the set. The use of an alternative metric to weed out the
decisions helped to reduce the e�cient set down from the initial set of although it
favoured the smaller farm sizes and will prove to be unsatisfactory when we consider
the next chapter focused on the larger scale problem of the production of biofuels
from biomass. There, the advantages of economies of scale in production output en-
courage the growth of bigger farms to supply adequate biomass input - and it may be
advantageous for the operators of such a facility to o↵er higher sale prices to farmers
to encourage them consider larger farms.

The analysis thus indicates that Miscanthus is the best crop for the farmer to
grow. More information that reduces the uncertainty about the prices the farmer for
the crop from buyers, in addition to the growth cost of the crop will be useful in
determining the eventual size of the farm.

7.6 Notes on sources

The data for that was used for the simulations was obtained from a range of sources.
There was quite a bit of variation in the numbers across the literature so in the end
we often had to select either what seemed most reasonable after consulting a number
of sources or take an average of a set of the numbers we had. We took this approach
since the goal of this study was a demonstration of the SD analysis methodology on
a simple yet realistic case. Rigorous recommendations will require better models and
more data. Tables 7.17, 7.18, 7.19 and 7.20 presents some of the sources from which
the data for the crops were estimated.

Sources for transportation costs (assumed same across the crops) include [1], [56]
and [6] and costs in di↵erent currencies (like the Euro) were converted using an average
that prevailed around the time of the data publication. Uncertainties were modelled
by adding appropriate spreads around the best numbers we came up with from the
sources, taking the range observed across the literature into account.
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Variable Sources
Yield [5] [44] [120] [124] [73] [104]

Establishment cost [44] [59] [73] [54]
Selling price and growth cost [5] [44] [120] [109]

Table 7.19: Data sources for Willow

Variable Sources
Yield [60] [110]

Establishment cost [40]
Selling price and growth cost [48] [60] [110]

Table 7.20: Data sources for the Corn stover
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Chapter 8

Case Study 3: Pathway selection
for the production of biofuels

Increasing concern about the rate of use of fossil fuels to power today’s global economy
as well as the security issues that go hand in hand with the increase in fossil fuel use
has led a lot of countries to invest heavily in the development of renewable, greener
sources of energy in the near future to replace the ubiquitous fossil fuels.

A major aspect of that e↵ort has been to try to utilize biomass - a resource
which is widely available. The first of these e↵orts was the conversion of biomass to
ethanol, using corn as the biomass of choice. This was initially hailed as successful and
promising for the future of energy generation. However, in retrospect, corn ethanol
has su↵ered from very serious drawbacks [50] like

1. Its alteration of the economics of food prices as more farmers were switching to
growing corn for conversion to ethanol since they benefitted from government
subsidies and thus led to a shortage of corn for food and driving up the price

2. Its near zero net energy output as many studies showed that the manufacture
of bio-ethanol from corn took up as much energy as was used in the conversion
process, making the entire process redundant

As a result, more e↵orts in the recent past have now been focused on the conver-
sion of non-food biomass like (primarily cellulose) into alternative fuels. Two main
research streams diverge at this point in trying to accomplish this goal. The first
is the use of microbes and the manipulation of biochemical pathways within these
organisms to directly produce industrial chemicals. Examples of such include (list
them). Many of these approaches are still in the laboratory phase although current
research also focuses on how to scale these up to industrial production levels.

The second stream is the use of thermochemical means to convert the cellulose to
crops. Most of this has been adapting technology developed in the late 20th century
for the transformation of coal into sythesis gas (gasification) and subsequently into
synthetic fuels (Fischer-Tropsch conversion). This approach to biomass utilization is
much closer to industrial scale application and a number of pilot plants have been (or
are being built) to test the economic and long-term feasibility of the technology. It is
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Figure 8-1: Schematic that illustrates the di↵erent steps that form the essence of the
biomass to liquids process. From [17].

this path that we will be examining in greater detail in this chapter. First we discuss
the overall structure of the biomass process and then develop simple mathematical
models that can be used for the analysis and pathway selection in the presence of
uncertainty. The discussion is that follows is largely a summary from the references
[102] and [19] and readers interested in a more depth are invited to consult them for
more details.

8.1 The Biomass to Biofuel conversion process

The conversion of biomass to biofuels takes place via the following main steps

1. Feed processing and pretreatment

2. Gasification

3. Gas clean-up and conditioning

4. Fischer-Tropsch synthesis

5. Product upgrading/reforming

These are illustrated in Figure 8-1 and we discuss each in some more detail in the
subsections below

8.1.1 Feed processing and pre-treatment

Harvested biomass crop is not often in the best form appropriate for its use in the
gasification stage. Depending on the source of the biomass, a number of modifications
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to the form and or content needs to be done before it can be used. Size reduction
and or compaction form (e.g. chopping, baling) form one primary pretreatment step
as they allows for better handling and processing of the biomass during combustion
or gasification. Drying is also another important pretreatment step as too much
moisture in the biomass reduces the heating value of the fuel. And, depending on the
distance between the source of the biomass and the processing facility, some of the
steps are carried out on the farms. The side benefit of this is that it can result in
lower transportation costs and thus allow for biomass to be sourced from distances
much further away from the farm.

8.1.2 Gasification

Gasification is the conversion of solid biomass to combustible gases in the presence of
an amount of oxygen insu�cient for complete combustion. The goal of gasification
in the BTL process is to convert the solid biomass into a gaseous fuel mix known
as synthesis gas - a mix of carbon monoxide and hydrogen - which can later on
be either completely burned to generate electricity or converted to liquid fuels via
Fischer-Tropsch synthesis.

Gasification takes place in three stages. The first stage is the pyrolysis stage
where the biomass is heated in the absence of oxygen, a process useful for driving o↵
the volatile components present in the fuel like water vapour, carbon monoxide and
carbon dioxide. This stage occurs at lower temperatures (225 - 500 degrees Celsius
[19]).

After the pyrolysis stage comes the gasification stage that is marked by 4 key
reactions, all of which occur between the char and the vapours released during the
pyrolysis. The first is the oxidation of carbon (char) that remains after the pyrolysis
stage to carbon dioxide i.e

C +O2 �! CO2 (8.1)

Next comes the Boudard reaction where the carbon dioxide is reduced by more
char (carbon) to give carbon monoxide:

C + CO2 �! 2CO (8.2)

Two other important reactions also take place in this stage. One of the more
important ones is the water-gas reaction where water vapour released in the pyrolysis
stage further reacts with some of the char and is reduced to hydrogen i.e.

C +H2O �! CO +H2 (8.3)

And finally comes the methanation reaction where some of the hydrogen produced
also reacts with the char to produce methane

C + 2H2 �! CH4 (8.4)

Some reactions also take place in the gas-phase between the gases produced by
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the gas-solid reactions. The most important of these are the water-gas shift reaction
where carbon monoxide is further oxidized by water vapour to produce carbon dioxide
and yet more hydrogen gas:

CO +H2O �! CO2 +H2 (8.5)

And finally the gas-phase equivalent of methanation where carbon monoxide reacts
with some hydrogen to produce more methane gas as well as water vapour

CO + 3H2 �! CH4 +H2O (8.6)

These are the principal reactions that describe the gasification process. Energy for
the reactions is supplied by the exothermic reactions - carbon oxidation and metha-
nation reactions - although most of it is supplied by the incomplete oxidation of solid
carbon to carbon monoxide. The fnal composition of the synthesis gas exiting the
gasifier as well as the temperature of the gasifier is dependent on the amount of oxygen
(or air) fed into the gasifier and the composition of the initial biomass. Composition
is represented by the oxygen-carbon (O/C) and hydrogen-carbon (H/C) ratios of the
fuel and the amount of oxygen fed into the system represented by the equivalence
ratio.

To define the equivalence ratio, we first note that an overall stoichiometric equation
for the combustion of biomass given as

CH1.4O0.6 + 1.05O2 �! CO2 + 0.7H2O (8.7)

where CH1.4O0.6 is a rough approximation of the composition of biomass [19] .
Thus roughly about 32.16 kg of oxygen gas is needed for the complete combustion of
23 kilograms of biomass. The equivalence ratio for gasification is defined as the ratio
of the amount of oxygen fed into the process to that required for complete combustion.
Prins et al. [87] note that (molar) equivalence ratio can range from about 0.24 for
cellulose to about 0.5 for graphite, highlighting the dependence of equivalence ratio
on composition. However, they also note that most fuels level o↵ at an equivalence
ratio of about 0.29 at lower gasification temperatures (less than 1000 degrees Celsius)
and about 0.32-0.33 at the higher temperatures (higher than 1200 degrees Celsius).

It should also be noted that besides gasification with oxygen or air, it is possible
to carry out gasification with steam where the water vapour is the carrier of the
oxygen required for the oxidation of carbon. In our analysis however, we will focus
on gasification with pure oxygen. Using oxygen instead of air for gasification reduces
the size of process equipment required for gasification (less volume flowing through
the process) and it can also achieve higher conversion e�ciencies (cite reference)

Gasifiers are predominantly classified according to the processes by which the fuel
is transported/conveyed through the equipment. This classification gives rise to three
types of gasifiers

1. Fixed bed

2. Fluidized bed
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3. Entrained flow

In fixed bed gasifiers, hot gas is passed through bed of solid biomass. There are
two main types - the updraft and the downdraft fixed bed gasifiers. In both cases,
feed is introduced into the system from the top of the gasifier and gasification occurs
as the biomass falls through it. In updraft gasifiers, the oxidizer (air or oxygen) is
fed at the bottom in counterflow to the movement of the biomass and the syngas
produced exits near the top of the gasifier. Downdraft gasifiers on the other hand
have the flow of the oxidizer co-current with the flow of biomass and the product gas
exits the gasifier near the bottom.

In fluidizied bed gasifiers, gas moves through the bed of solid biomass at such a ve-
locity that the mixture begins to behave like a fluid (hence the name). Solid, crushed
fuel is mixed with inert material and continuously introduced into the gasification
chamber. The large velocities needed for fluidization means that air (as opposed to
oxygen) is often the oxidizer of choice, because of the large volumes needed to sustain
such velocities. As with fixed-bed gasifiers, there are also two types of fluidized bed
gasifiers - bubbling fluidized bed (BFB) and circulating fluidized bed (CFB) gasifiers.
In bubbling fluidized bed gasifiers, the velocity of the gas stream is such that it is
just enough to keep the bed agitated but in the same position. In circulating flu-
idized beds though, the gas velocities are high enough to physically transport the bed
particles which have to then be returned to the position using cyclones.

Entrained flow gasifiers are the final type of gasifiers and here, the solid fuel is
injected as very fine particles into the oxidizing stream and the reaction occurs as
this stream flows through the gasifier at very high temperatures.

There are advantages and disadvantages to using each of the di↵erent types of
gasifiers. Fixed bed gasifiers are cheap and simple to construct but tend to produce
syngas with a lot of tar and particulates - leading to high clean-up costs.

Fluidized bed gasifiers give high reaction and heat transfer rates and uniform
conditions across the bed. These lead to higher conversion of the biomass with low
tar production. However, fluidized beds tend to also be operated at lower gasification
temperatures than the other two types of gasifiers to prevent the ash content in the
fuel from reaching fusing temperature which would cause the bed to defluidize. These
lower temperatures lead to some loss in e�ciency and biomass conversion that could
have taken place if the temperatures were high enough for cause tar cracking.

Entrained flow gasifiers would give the highest conversion of biomass to syngas and
very little residual tar since the temperatures are high enough to cause tar-cracking.
However, the amount of feed processing required for the potential.

8.1.3 Syngas clean up and conditioning

Regardless of the source of biomass and the choice of gasification, impurities usually
end up in the syngas product from the gasifier and these have to be removed before
the gas can be synthesized into fuels in the downstream Fisher-Tropsch processes
as the impurities poison catalysts and can significantly reduce their performance and
lifetime. Permanent gaseous impurities like oxides and hydrides of sulfur and nitrogen
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are removed using solvent-based methods where vapourized impurites like tars and
alkaline compounds are removed by first cooling the product gas to temperatures that
allow the vapours to condense (and or solidify) and then subsequently filtering the
mixture in order to get rid of the condensates alongside the particulate impurities
like ash.

Syngas conditioning takes place after clean-up and here the goal is to optimize
the CO�H2 ratio in the syngas for the particular FT application. This is primarily
achieved via the water-gas shift reaction where steam is used to oxidize some of the
carbon-monoxide to carbon dioxide, with the subsequent production of more hydrogen
gas.

8.1.4 Fischer-Tropsch Synthesis

Fischer-Tropsch synthesis is the name given to a wide variety of reaction mechanisms
that aim to convert synthesis gas to liquid hydrocarbons of various forms. This
reaction was originially discovered by Fisher and Tropsch in the 1920s but since that
time, many similar reactions with di↵erent catalysts have been observed. The generic
reaction is given as

nCO + 2nH2 �! (CH2)n + nH2O (8.8)

The final product distribution is given by the Anderson-Schultz-Flory distribution
as

Wn = n(1� ↵)2↵n�1 (8.9)

where n is the number of carbon atoms in a product, Wn is the weight fraction of a
product of chain length n in the final product mix and ↵ is the growth probability
factor. Theoretically, only methane (n = 1) and waxes (n > 19) can be produced
with near 100% selectivity - corresponding to very low and very large growth proba-
bility factors respectively - with the intermediate chain-length products like gasoline
and diesel having only a peak selectivity of about 40 - 50 percent maximum. The
distribution is illustrated in Figure 8-2. [43] state that the ↵ is dependent on the cat-
alyst, temperatures, pressures and the applied Fischer-Tropsch technology (currently
developed by di↵erent companies) but other factors like the feed gas composition and
the presence of promoters can a↵ect the distribution too [19].

In general though, the choice of catalyst for the FT reactor determines a number
of other significant process parameters. The use of cobalt-based catalysts gives rise to
a higher selectivity for the heavier end products hence producing more diesel and wax
while iron gives products on the lighter end, with a preference towards the production
of gasoline. Cobalt catalysts also lend themselves to lower reaction temperatures
while iron catalysts can utilize a greater range of reaction temperatures. Cobalt also
requires a narrow and high range of the hydrogen-carbon monoxide ratio while iron
can tolerate a wider range since it can also catalyze the water-gas shift reaction unlike
cobalt.
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Figure 8-2: Weight distribution of the di↵erent chain lengths from FT synthesis

8.1.5 Product upgrading

The production of transportation fuels via FT does not take place with complete
selectivity. There is often the generation of solid waxes and even the necessary prod-
ucts generated are often impure and need to be treated before they can be sold. For
the production of diesel fuels, the waxes and other large-carbon chain compounds are
hydrocracked to give the final product [111].

8.1.6 Electricity and Chemical Products

While the above processes have outlined the general process for transforming biomass
to liquid (transportation) fuels, it should also be highlighted that there is the poten-
tial of generating other products in the biomass transformation. Electricity can be
generated by the combustion of some syngas or utilization of heat generated during
gasification. Other chemicals like Methanol, dimethylether and even hydrogen can be
generated as alternative product options beside the main-stream transportation fu-
els. In this study, we will only consider the production of the transportation fuels like
diesel and gasoline and the possible generation of electricity as the principal desired
outcomes of the BtL plant we will be analyzing.

8.2 Mathematical Model for Biomass to Liquids
Process

In order to select a production pathway among all the alternatives, it is necessary to
build a mathematical model that adequately represents the physical transformations
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and economic value added. Before we do so, it will be useful to highlight some of the
key decisions that need to be made

1. The amount of biomass feed to be processed (tons per day)

2. The choice of gasifier for the gasification process - either an entrained flow or
circulating fluidized bed gasifier

3. The choice of reforming the methane gas generated in the gasifier for production
of FT liquids or using it to generate electricity

4. The fraction of the syngas generated that should be diverted for the production
of electricity

5. The choice of catalyst for the FT process as well as the product mix.

6. The selectivity of the FT reaction

7. The choice of a once-through or a twice through reaction process

The schematic diagram for the decision framework presented is illustrated in Fig-
ure 8-3. Of the variables, three of them are continuous in nature: amount of feed
processed, fraction of syngas used for electricity generation and FT selectivity, while
the others are binary choices. To use the model with our decision analysis frame-
work, it is important that we discretize it in order to have unique decisions. The
range of choices for these variables, as well as how they a↵ect the eventual outcome
are discussed in detail in the subsequent sections.

The overall model consists of technical and economic components. The technical
model tracks the physical (and chemical) transformation that converts the input
biomass into output products. The economic model tracks the capital and operational
costs of setting up the plant as well as the revenues to received from the sale of plant
products. We will develop both the technical and economic models separately.

Both models follow that developed by Hamelinck et al. [43] with appropriate
revisions made where necessary in order to adapt it to our uses. Since Hamelinck et
al. borrow from the model developed by Tijmensen et al. [111], some of the structure
in that model is also evident in ours as well and we highlight as much where that is
the case. We refer interested readers to both papers for more details on the models
as we discuss only parts of it, highlighting the areas where modifications were made.

8.2.1 Technical model for the Biomass to Liquids Plant

Feed preparation and conversion to syngas As mentioned, we will be using the
results of the previous chapter, assuming that we have a source of biomass supply for
the feed. We assume that we receive wet unprocessed biomass and as such estimate
that pre-treating the biomass will result in some loss (moisture and some carbon
content). Thus the amount of usable biomass that will eventually make it to the
gasifier is determined by the equation

x2 = k1 ⇥ (1�mf)⇥ x1 (8.10)
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Figure 8-3: Schematic strucure for BTL model. Text in bold red font represent the
decisions to be made

where x1 represents the amount of biomass feed coming into the plant (tonnes/day),
x2 represents the prepared biomass feed that goes into the gasifier (tonnes/day), mf
is the fraction of moisture present in the feed, and k1 represents the e�ciency of the
overall process, assumed to be about 95%. The value of k1 depends on the nature
of the biomass assumed to be coming into the plant and how much mass is lost
during processing. The amount of moisture present in the biomas feed varies and this
variation will be considered when we analyze the model in the presence of uncertainty.
We assume a mean value of about 30% in line with [111].

Gasification Gasification can either take place using air or oxygen. In our process,
we assume a choice of oxygen for gasification and this is supplied using an air sepa-
ration unit. The capacity of the oxygen plant required is a function of the amount of
biomass that the facility processes and the equivalence ratio required for the biomass
gasification

XO2 = keq ⇥ x2 (8.11)

where XO2 is amount of oxygen supplied and keq is the equivalence ratio. The equiv-
alence ratio in general varies between 0.26 and 0.3 and so we assumed a mean value
of 0.28. The products of gasification were generated via a material balance from the
overall gasification equation
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CH1.4O0.6 + yO2 �! aCO + bH2 + cCO2 + dH2O + eCH4 (8.12)

This equation is a sum of the principal components of all the gasification equations
highlighted in the process description section. y represents the equivalence ratio of
the plant and the letters a - e represent the components of the respective species in
the equation i.e. carbon monoxide through methane. From an atom balance, three
independent equations can be written for the variables. The carbon balance yields

a+ c+ e = 1 (8.13)

and the hydrogen balance yields

b+ d+ 2e = 0.7 (8.14)

and finally the oxygen balance gives

a+ 2c+ d = 0.6 + 2y (8.15)

Since there are five variables and only 3 balances, we need two other equations
to uniquely determine the composition of the exiting gas. These are dependent on
the nature of the gasifiers. Entrained fluid gasifiers give higher quality gas than the
fluidized bed gasifier and this is reflected in the percentage of carbon monoxide and
hydrogen components of the syngas produced. We set the percentage produced by
the entrained fluid gasifier as 0.85 and that produced by the circulating fluidized bed
gasifier at around 0.65 1. This gives a fourth equation for the set of variables above
as

a+ b = r1 ⇥ (a+ b+ c+ d+ e) (8.16)

where r1 is the ratio. And finally, since the goal of gasification is the production of
CO and not the production of the other components, we set the final quality equation
ratio of CO in the syngas to that of the other carbon bearing components i.e.

a

c+ e
= r2 (8.17)

We assume that r2 is about 3.5 for CFB and about 4 for entrained fluid gasifiers
(check and make sure your ratios are correct. These allow us to solve the gasification
equation to get the composition of the exiting syngas that can then be used for the
production of FT liquids.

Gas cleanup and processing Hamelinck et al. include equipment for gas clean-up
and processing and the equipment needed in those require technical calculations. The
basis for the calculations are all given in the basis of the volume of gas exiting the gasi-
fier. This volume is calculated using the ideal gas law as an approximation and then

1These numbers are within the range suggested by [4] - a vendor publication
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accounting for contractions in non-ideality. For a given pressure and temperature,
the volume of an ideal gas is given by

V = f ⇥NRT/P (8.18)

where T represents temperature, P , pressure, V , volume, N , total number of
moles, V , the volume of the gas and f the factor that accounts for non-ideality of the
gas2. Appropriate conversion units are used to convert the volume. Entrained flow
gasifiers are cleaner than fluidized bed gasifiers so we modify the costs and equipment
appropriately to account for this di↵erence. We omit cyclones and particle filters in
the cost for the entrained flow as well as the tar cracker but leave all these in the
fluidizied bed gasifier.

The exiting flowrates of all the gases were obtained by multiplying the composition
obtained from the gasifier with the inlet molar flow rate into the gasifier. Molar flow
rate was calculated using the average biomass composition. An e↵ectiveness factor
was incorporated to allow for the fact that not all the biomass is converted to syngas
- that some is lost in the conversion to syngas via tar and other particulates. A
conversion factor of 0.95 is used for entrained flow and 0.9 is used for the CFB
gasifier.

After cleaning up the gas, we also process it to have it in the form needed for
FT synthesis. Again, Hamelinck et al. [43] provide a breakdown of the equipment
needed to accomplish this and we modify these as necessary depending on the par-
ticular choice of the FT process.The ratio of hydrogen to carbon monoxide produced
after gasification is often smaller than is required for the synthesis of FT liquids.
The reaction requires about 2 moles of hydrogen to 1 mole of carbon monoxide but
the output of the gasifier is usually less than 1:1. To accomplish the desired ratio,
some water gas shifting and/or steam/autothermal reformation of methane to syngas
components. The water gas shift reaction is already given in the gasification section
in equation 8.5. This equation produces 1 mole of hydrogen gas for every mole of
carbon monoxide reacted. The steam reformation of methane is given as [90]:

CH4 +H2O �! CO + 3H2 (8.19)

H2O + CO �! CO2 +H2 (8.20)

where the second equation is simply the water-gas shift reaction. Halabi et al[42] give
the overall reaction for autothermal reforming as

CH4 + xO2 + (2� 2x)H2O �! CO2 + (4� 2x)H2O (8.21)

where x in the above equation represents the oxygen to carbon molar ratio.
The big di↵erence, as can be seen from the two reactions presented above is that

steam reforming doesn’t require oxygen while autothermal reforming does. Autother-
mal reforming also produces a lower amount of hydrogen than the steam reforming

2We ignore the factor by setting its value to 1. For more advanced models, more appropriate
equations of state can be used to estimate the value of f under di↵erent conditions

161



Variable Definition Variable Definition

b Ratio of H2 to CO in FT reactor z Amount of CO shifted
X1 Amount of CO produced in gasifier Y1 CO entering FT reactor
X2 Amount of H2 produced in gasifier Y2 H2 entering FT reactor
X5 Amount of CH4 produced in gasifier Y3 Total CO2 produced

Table 8.1: Variable definitions for the FT balance

(can be seen from the equations) but is likely cheaper to implement [43] and will be
used in this study as was used in our reference.

To thus calculate the amount and components of the syngas flowing into the
reactor, we need to include the shifting and reforming. Shifting produces 1 mole of
hydrogen gas for every mole of carbon monoxide consumed while we will assume that
autothermal reforming produces about 2.6 moles of hydrogen to 1 mole of CH4

3. We
assume that this number covers all of ine�ciencies in the conversion process. To
determine the carbon content of the entering feed, we have to do a material balance
using the equations. We define the variables used in the following analysis in Table
8.1

Given those variables, the amount of CO that needs to be shifted to H2 is given
as

z =
bX1 �X2 � 2.5X5

1 + b
(8.22)

The resulting amount of carbon monoxide and hydrogen entering the FT reaction
phase as a result of the shift and reformation becomes

Y1 = X1 � z (8.23)

Y2 = X2 + z + 2.5X5 (8.24)

the final amount of the carbon dioxide generated in the gasification and processing
stage is

Y3 = X1 +X5 + z (8.25)

And with these equations, we can determine the appropriate downstream variables.
FT processes take place over a range of pressures - and the particular pressure

desired determines the cost of the compression. We choose a pressure of around 40
bars as the representative pressure which is the average between the range of 20 and
the pressure of 60 bars found in literature [43]. We assume a mean temperature
of about 550 Kelvin which is near the average of the temperatures required for the
di↵erent catalysts (Iron has higher temperatures of 300-350 degrees Celsius and cobalt
between 200 and 250 C [107]). We assume to first order that the compressive work is

3This was one of the yields obtained in simulations reported by [42]
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that obtained by an isothermal compression of the gas to the desired pressure which
gives that the work done is obtained by

W = NRT ⇥ ln(P2/P1) (8.26)

where the final pressure, P2 was eventually chosen to be 40 bars and the initial
pressure, P1 was the gasification pressure of 20bars.

FT production and upgrading The amount of FT products generated were cal-
culated based on the Anderson-Schultz-Flory distribution parameter, ↵. This pa-
rameter features in our model as a decision variable based on the choice of catalyst.
Swanson [107] gives the distribution of ↵ as

↵ = [0.2332⇥ yCO

yCO + yH2

+ 0.6330]⇥ [1� 0.0039(T � 533)] (8.27)

As can be seen, the value of ↵ is dependent both on composition and Temperature.
FT with a cobalt catalyst requires a hydrogen-carbon monoxide ratio of about 2:1
while FT with an iron catalyst can do with a wider range of 0.7 - 1.7. Because we can
tune the value of ↵ by adjusting a number of other things like pressure, temperature
and composition, we make it a decision variable and not a variable. However, given
the stricter composition requirements for the cobalt catalyst and the more variable
requirements with iron, the possible ranges of the value of alpha varies depending on
the catalyst choice and this is reflected in the model. Cobalt gets a smaller range of
0.8 - 0.9 while Fe gets a larger range of 0.6 - 0.9.

Cobalt as a catalyst is more expensive than iron however it has a longer half
life. To account for the di↵erence in catalyst cost balanced for di↵erent lifetimes, we
assume that the FT reactor cost for iron is decreased by a factor of 4 (the reference
paper uses cobalt as the basis catalyst). We chose this because it we lacked data to
estimate the actual ratio4 and it gave a reasonable order of magnitude for the range
of costs.

To size the reactor, attempts where made to use the reaction rates developed in
[43] in order to determine total catalyst weights and subsequently catalyst volumes.
However, data was only presented for the cobalt case and the presented data didn’t
seem to match up with the observed volumes and overall rates they obtained after
our calculations. Attempts to normalize the calculations based on their results were
unsuccessful when we proceeded to try extending to the case of iron as catalyst. In
the end, we resulted to modelling the capacity after the data given by Tijmensen et
al. [111] - a model which produced stable results that were within the range of costs
anticipated. This model determines the cost and size of the reactor based on the
energy content of the FT liquids produced.

Once the selectivity parameter has been selected, the amounts of the di↵erent
fractions are obtained from the ASF distribution. The gas fraction is taken as the
components with 1-4 carbon atoms, the gasoline fraction that with 5-8 atoms, the

4Such data include the lifetimes of the catalysts, rate of poisoning and the relative amounts
required as a function of the reactor volume
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diesel fraction that with 9-18 atoms and the wax fraction taken as everything with
more than 20 carbon atoms 5. Once the respective fractions have been calculated,
the mass flow rates of each are calculated as

Fi = mr ⇥Wi ⇥MFT (8.28)

where MFT is the mass flowrate of the feed into the reactor. Note that from the
FT reaction, the total hydrocarbons produced from the syngas feed is a just a fraction
of the mass of the feed as the rest of the mass is water. This ratio is the variable mr
in equation 8.28 and can be determined to be approximately 14/32 from the overall
equation.

Note that separation costs are not factored into this model separately although
we include cracking costs. All the wax is sent to the cracker for upgrading and the
products from cracking are modelled principally as diesel while the gasoline fraction
is sold at the price of gasoline.

Power Generation Included in the model is the possibility of generating electricity
along side liquid fuels by combustion of fuel gases generated within the process. These
gases can come from one of three places

• Methane generated as a by product in the gasification process

• Actual diversion of some of the syngas generated in the gasifier for electricity
generation

• Combustion of the gaseous component of the FT products

Power generation from all of these sources is calculated using the following equa-
tion

Pj = mj ⇥HHVj ⇥ ⌘ (8.29)

where j denotes the source (one of the three possibilities), mj the flowrate of the gas,
HHVj the higher heating value of the gas and ⌘ the e�ciency of converting thermal
energy to electrical energy. The choice to divert a fraction of the syngas generated
is a decision variable included in the model. An e�ciency factor of 0.8 and 0.7 is
included in the calculation of the energy content of the methane from the gasification
process (where it is not reformed to hydrogen) and the o↵-gases from the FT process
to account for impurities and other ine�ciencies.

8.2.2 Economic model for the Biomass to Liquids plant

The economic model for this plant comprises both the capital costs and the running
costs. The net present value is used as the profitability criterion and eventually
balances both components. We first develop the capital costs and then the operating
costs follow

5http://www.zero.no/transport/biodrivsto↵/fischer-tropsch-reactor-fed-by-syngas (accessed Jan-
uary 10, 2013). Note that these are rough proportions and only used to give first order estimates
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Capital costs Hamelinck et al. [43] develop a fairly detailed economic model with
parameters for the biomass to liquids process and we utilize the model and the data
they give in developing our economic model. They use the following general structure
for developing the capital cost of all the equipment in the process

C2 = C1 ⇥ (
S2

S1
)a (8.30)

where C2 is the capital cost of the equipment, C1 is the capital cost of a reference
size of the equipment, S2 is the capacity of the equipment to be costed and S1 is
the capacity of the reference, S2 the capacity of the equipment to be cost and a the
exponent. Where insu�cient data exists to determine the value of the exponent, the
value of 0.6 is usually taken as a good starting point [105] but Hamelinck et al. also
provide data for the exponents as well. We present the data from their paper but
include modifications where their equipment options do not cover all the possibilities.
Some of the variables include maximum sizes which we didn’t take into consideration.

Operating costs The biggest elements of the operating costs of the plant are the
costs of biomass which we calculate as

Feedcost = Feedmass⇥ Feedprice (8.31)

We assume a feed price of about $70/tonne although as capacity increases, we
include a factor that allows the costs to increase since biomass may have to be sourced
from much further out, adding to the transportation costs. In addition to the feed
cost, we assume that other overheads, administrative and plant maintenance costs
can be approximated at about 10% of the capital cost of the plant [111].

Revenues The principal sources of revenue for the plant come from the sale of FT
liquids and revenue from the sale of electricity. Revenues from the sale of FT liquids
are obtained by calculating the number of gallons of gasoline and diesel produced per
year multiplied by the price of each product i.e

Revenues =
X

gallonsfuel ⇥ pricefuel (8.32)

The revenues for electricity are obtained by determined the number of megawatt-
hours of electricity the plant produces per year and then multiplying by the price of
electricity per megawatt-hour which, in the deterministic case we assumed to be $70
per megawatt-hour. We assumed the plant to be running for 330 days in a year.

With all these numbers we can then determine the net present value of the plant
as follows

NPVBTL = fd ⇥ (Revenues�Operatingcosts)� Capitalcost (8.33)

where the factor fd captures the discounting that occurs in determining net present
value and was defined in Chapter 7.
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8.3 Model Validation

To check that our implementation of the published models were correct, we compared
our outputs against the numbers that the papers obtained - while trying to make sure
we were able to replicate the model structure assumed by the papers when producing
the numbers. The results obtained by Tijmensen et al. [111] are given in Table ??.
The cost break down is for a plant with a plant of capacity 400 MWHHV input. Under
certain assumptions6, we determine that this correlates to a plant processing about
2500 metric tonnes of wet biomass per day. We use information from their process to
determine the appropriate process structure for comparison. Syngas quality suggests
the use of an entrained flow gasifier and they explicitly mention all concepts requiring
the use of a cobalt catalyst - further emphasized by the need for a shift reactor. There
is also no reforming of the syngas and we asume a once-through process becaue of the
co-production of electricity. Though they state a once-through process, they use an
e�ciency that corresponds to our twice through e�ciency and so we base the model
on that. Their model neglects the cost of upgrading diesel so in the comparison, we
do the same.

On an overall basis, our model compares quite well as our model yields an overall
cost of $328 million while theirs yields a cost of about $340 million which is only a
di↵erence of about 4%. Furthermore, We compared the outputs of the model (total
capital cost, production etc) with some another set of numbers from the literature.
The principal reference was the paper by Boerrigter [17]7.

To check the numbers, first we determine the specific Total Capital Investment of
the plant using the following equation he gives:

TCIs = 52000⇥ (
34000

scaleX
)y (8.34)

where y is an appropriately chosen exponent between from 0.3 to 0.5 depending on the
scale of the plant8. This equation gives the specific total capital investment (TCIs) of
the plant i.e. the capital cost per barrel of FT liquid it produces per day. To then get
the TCI, we simply multiply the specific TCI by the barrels of FT liquids produced
per day.

Since the basis of our plant capacity is the amount of biomass processed per day,
we need to convert his capacity basis to ours. From the paper, the FT fuel output
seems to be based on an overall (energetic) conversion of biomass to FT liquids of
56%. At this e�ciency, a plant that processes about 2500 tons of wet biomass per

6To back calculate the amount of biomass the plant processes per day (the basis of our plant), we
assume a moisture and non-biomass content of about 30% and a higher heating value for biomass
of about 20 MJ/kg

7This paper seemed apropos because it doesn’t reference the paper by Hamelinck et al. thus
allowing us to reasonably conclude that the papers are independent An examination of the references
of both papers also showed independence - no mutual papers cited - although an extensive comparison
of collaborator names within the papers wasn’t carried out

8He notes that at scales less than 20,000 barrels per day, the exponent should be closer to 0.4
and even closer to 0.5 when plant production drops to 5000 barrels of FT liquids per day. We will
use a value of 0.4 for the rest of the analysis
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Parameter Unit Value

Cost of biomass $ per wet tonne 70
Cost of electricity $ per megawatt 70
Price of diesel $ per gallon 4

Price of Gasoline $ per gallon 3.5
Moisture content of wood kg/kg 0.3

E�ciency of electricity generation MJ/MJ 0.55
Plant (economic) lifetime Years 15

Discount rate % 10

Table 8.2: Nominal values of the parameters used in running the BTL model

day produces 2100 barrels per day of FT liquids9.
Using his cost correlation in Equation 8.34, the capital cost of a plant with this

capacity is about $320 million dollars. Our model, assuming a CFB flow gasifier with
an iron catalyzed FT process and a biosyngas-FT conversion of 80% (double pass type
e�ciency)and an ↵ of 0.8 gives a plant with a capital cost of $317 million dollars,
a value that is about 1% smaller than the Boerrigter estimate - a remarkably close
agreement for the di↵erence in approach for arriving at the calculations. While there
is the possibility that there is a mutual model that both models are derived from, at
the very least it gives us the confidence that our model was implemented correctly
and we can proceed with confidence of agreement with literature.

8.4 Pathway selection in the deterministic case

With the model that we have built, we can now attempt to optimize for the process
pathway based on the NPV metric. To run the deterministic case - i.e. the case where
all the parameters are known with certainty - we need a set of base values with which
to determine the outputs. These values are highlighted in Table 8.2. We also give a
list of the variables and the range of values that they assume in Table 8.3

A process design consists of a value selected for each of the variables presented
in Table 8.3. The continuous variables are discretized in order to be able to do this.
Using the parameters, we run the entire range of decisions through the model and
obtain the NPV for each decision. We can then sort the decisions based on the NPVs
to determine the decision that gives the maximum NPV. The histogram in Figure 8-4
shows the range of net present values obtained using all the decisions10.

The average NPV characterizing this range of decisions is about -$240 million

9This assumes that the FT liquids are largely diesel with an energetic content of about 36 MJ
per liter. Assuming a conversion of 1 barrel to 160 liters, an energy content of wood (dry basis) of
20 MJ per kilogram and a moisture content of 30%, we arrive at the final figure

10In this section we will be using a number of metrics that are often associated with distributions
to describe the outcome of the deterministic decisions. This is not because the outcomes are random,
but rather that the range of decision options is so large - there are about 21000 possible designs -
that the best discussions are obtained in some form of aggregation
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Variable Type Range

Biomass feed Continuous 500 - 5000 tons per day
Gasifier choice Binary Entrained Flow/Fluidized bed

FT catalyst choice Binary Cobalt/Iron
Inclusion of reformer Binary Yes or no

FT selectivity Binary, Continuous 0.6-0.8 (iron); 0.8 - 0.9 (cobalt)
One or two pass e�ciency Binary 1 or 2

Syngas diverted for electricity Fraction 0 - 0.9

Table 8.3: Decisions in the BTL process and their range of values

−6 −4 −2 0 2 4 6 8 10
x 108

0

1000

2000

3000

4000

5000

6000

7000

Net present value ($)

Figure 8-4: Histogram of the net present values for all the designs
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Variable Best NPV decision Worst NPV decision
Biomass processed 5000 5000

Gasifier type Entrained Flow Fluidized bed
Syngas fraction for electricity 0 1

FT Catalyst Cobalt -
FT selectivity 0.0.88 (cobalt maximum) -

Autothermal reformer Yes -
One or 2 passes through FT 2 passes -

Net present value $940 million -$580 million

Table 8.4: Decision variable for the best and worst NPV outcomes for the BTL process

Variable X̄i � X̄ Variable X̄i � X̄
EF Gasifier $44 million FB Gasifier -$44 million
Co catalyst $70 million Fe catalyst - $70 million
Reformer $ 1.9 million No reformer - $1.9 million
1 pass -$10 million 2 passes $10 million

Table 8.5: E↵ects of the di↵erent binary variables

while the median NPV is about -$270 million - highlighting the skewness in the range
that can be seen in Figure 8-4. Overall, the realizable net present values range from
-$580 million to a positive of $940 million. Both extremes occur at the maximum
processing capacity of 5000 tons per day. Table 8.4 below gives the decision variables
that yield both best and worst designs. The flowsheets corresponding to these two
designs are illustrated in Figure 8-5 and Figure 8-6.

From the table and the diagram, we see that the critical variables that a↵ect the
process are the type of gasifier and the choice to produce electricity as all the other
variables take on the same values for both decisions. We however won’t just rely on
the extreme decisions for the e↵ect of the decisions as we analyze the e↵ect of each
variable subsequently. We take the average of each variable held at its value as a
measure of its overall e↵ect on the process. The averages are reported in Table 8.5
and the continuous variables are illustrated in Figures 8-7 to Figure 8-10

From the table and the figures, a number of things are clear. First we see that
capacity alone is not su�cient to guarantee great value although the extremes do
better on average than the middle. This, at first seems counter-intuitive because
incresing economies of scale ought to mean that in general, as the capacity increases,
the designs should get better. However, close examination reveals that with a poor
structural design, say the worst case structure in Table 8.4, larger capacity just ampli-
fies the bad outcome in the same way it amplifies a good outcome. Thus the e↵ect of
capacity is dependent on the process structure and isn’t necessarily always positive.

The gasifier choice has a significant positive e↵ect on the net present value because
it leads to a higher conversion of the carbon in the biomass to the useful syngas that
can either be used for electricity generation or for fuel production.
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Figure 8-5: BTL flowsheet for design with the maximum (deterministic) net present
value

Figure 8-6: BTL flowsheet for design with the minimum (deterministic) net present
value
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Figure 8-7: Improvement over the overall mean as a function of inlet processed
biomass
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Figure 8-8: Improvement over the overall mean as a function of the fraction of syngas
diverted to electricity production
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Figure 8-9: Improvement over the overall mean as a function of the FT selectivity
parameter for cobalt
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Figure 8-10: Improvement over the overall mean as a function of the FT selectivity
parameter for cobalt
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Figure 8-8 shows a very interesting trend - diverting syngas to the production of
electricity instead of liquid gives a linear relationship between the deviation from the
overall mean and the fraction diverted. The average improvement in net present value
in diverting no syngas and diverting all the syngas produced to electricity generation
is about $300 million - and this change occurs in a linear increment as the fraction of
syngas diverted is increased.

The linear relationship can be understood by considering the fact that the overall
conversion e�ciency (energy input to energy output) to either fuel or syngas stays
about constant. As a result, the energy in a unit of processed biomass can either be
converted to a certain fraction of electrical energy or to another fraction of fossil fuel
energy. However, the prices of these units of energy are di↵erent. For the deterministic
model, we assumed a price of $70 per MWh of electricity, which is about $20 per MJ of
electricity11. Assuming, for simplicity, that all of our fossil fuel energy was converted
to diesel fuel which we priced at $4 per gallon, this translates to a selling price of
about $30 per MJ of fossil fuel energy12.

Thus every megajoule of syngas energy diverted to the production of electricity
instead of liquid fuels (assuming relatively equal overall energetic e�ciencies) gives
$10 less in returns and it is this average constancy that is reflected in the slope. The
price di↵erential in the outputs also reflects why in Table 8.5 any variable that leads
to an increase in the amount of fuel produced over electricity - introduction of a
reformer, recycling unconverted syngas through the reactor a second time to increase
overall e�ciency - leads to an improvement of the NPV.

This also explains Figures 8-9 and 8-10 that show the increase in value that comes
with higher FT selectivities. At higher selectivities, more of the syngas going through
the FT reactor is converted to liquid fuel versus gaseous products (see Figure 8-2),
resulting in less electricity produced (since the gaseous products are burned to produce
electricity). However, the selectivity curves are not as linear as the electricity curves
because the tradeo↵ between gaseous products and liquid fuels is not exactly a linear
function of the selectivity as the Anderson-Flory-Schultz distribution shows.

The relationship of the choice of the gasifier is not readily intuitive. Entrained
Flow gasification gives higher overall conversion but also has a higher cost of feed
preparation. The positive relationship between the choice of this gasifier and the
average performance of a design with this choice relative to the overall average illus-
trates that the cost of pre-treatment on average is, over the lifetime of the plant, less
than the average value of the extra returns obtained from increased overall e�ciency.

And finally, the positive relationship of the cobalt catalyst is essentially tied to
the fact that it gives higher FT selectivities than the iron catalyst - and the returns
from this higher selectivity in terms of more liquid fuel produced as opposed to more
electricity generated outweighs the extra cost of the catalyst as factored in by the
model.

Given these relationships, we can now understand the variable choice that pro-

111 MWh = 3.6 MJ
12Energy content of diesel is about 36.4 MJ per liter and there are 3.78 liters of diesel in a gallon

of fuel
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Variable Nominal value Range Unit
Biomass price 70 35 - 140 $ per wet tonne
Electricity price 70 30 - 100 $ per MWh
Gasoline price 3.5 1.75 - 6 $ per gallon
Diesel price 4 2 - 6.5 $ per gallon

Moisture content 0.3 0.2 - 0.4 -
Electricity conversion e�ciency 0.55 0.5 - 0.6 -

Overall cost coe�cient 1 0.7 - 1.3 -
Discount rate 10 7 - 13 -

EF Gasifier syngas conversion 0.8 0.75 - 0.85 -
EF Gasifier carbon conversion 4 3.5 - 4.5 -
CFB Gasifier syngas conversion 0.65 0.55 - 0.75 -
CFB Gasifier carbon conversion -

FT 1 pass e�ciency 0.6 0.5 - 0.7 -
FT 2 pass e�ciency 0.8 0.7 - 0.9 -

Table 8.6: List of parameters in the BTL model that will be varied for the uncertainty
analysis

duces the best NPV. As to structure, we want to maximimize the amount of liquid fuel
produced over electricity - leading to a choice of an entrained flow gasifier, a cobalt
catalyst, no syngas diversion for electricity production, inclusion of autothermal re-
former, using the highest possible selectivity available and recycle through FT reactor
for higher conversion e�ciency. Once these are done, we can then take advantage of
economies of scale by building a structure to maximize throughput/capacity.

8.5 Pathway selection under uncertainty

The analysis of the design procedure under uncertainty is similar to those done in the
previous case-studies. First we select a list of key parameters that we will be varying in
the design. These are listed in Table 8.6 together with the range of uncertainties. For
the analysis, we will be assuming that all the distributions are uniformly distributed
with their distributions often centered around the nominal parameters used in the
deterministic case.

Once the uncertain variables are implemented, we run the analysis framework to
get the decisions present in the stochastic dominance e�cient sets in addition to those
in the mean-variance e�cient set. Table ?? shows the decisions present in the single
objectives while Table 8.8 shows the number of decisions in the Stochastic Dominance
and Mean-Variance e�cient set.

A few things to note about the distributions. First, except for the gasoline and
diesel prices, all the uncertain parameter were determined to be independent. This
is a simple assumption - but one that can easily be changed in the model as more
information on the correlations among the parameters are known. Secondly, one un-
certain variable was used to simulate the diesel and gasoline prices on the assumption
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Variable Expected Value Worst-Case
Biomass processed 5000 500

Gasifier type Entrained Flow Entrained Flow
Syngas fraction for electricity 0 0

FT Catalyst Cobalt Cobalt
FT selectivity 0.73 0.88

Autothermal reformer Yes Yes
One or 2 passes through FT 2 passes 2 passes

Table 8.7

Objective Number of Decisions

FSD 11
SSD 11

Mean-Variance 122

Table 8.8: Number of decisions in the Stochastic Dominance and Mean-Variance
e�cient set

that these prices in general track each other closely in the world market.
In addition, the e�cient sets generated in Table 8.8 were obtained using a sample

size of 1000 simulations for the uncertain variables. This is because this was the
largest thousand number of simulations that the MATLAB environment we used13

was able to handle before running out of memory. Our compromise was to run this
simulation (and a few others with sample sizes smaller) and examine the breakdown
of the decisions in the e�cient sets to see if any variables were uniformly excluded.
Once identified, these were removed from the set of choices and bigger sample sizes
were run with the remaining decisions so that better representation of the decisions
in the e�cient set could be obtained.

Table 8.8 displays the sizes of the e�cient sets when all the decision variables
were made to vary. The FSD and SSD sets are identical and contain the same 11
decisions. Essentially these correspond to the discretized capacity dimension - with
all other variables remaining the same, with the essential structure given in Table 8.9.

The break down of the decisions that comprise the mean-variance e�cient set are
given in Table 8.10 and in Figure 8-11.

Figure 8-12 displays the cumulative distributions for the decisions - indexed by
their biomass capacities. For greater contrast the cumulative distributions for the
largest capacity and the smallest capacity are also plotted and shown in Figure 8-13
These, by the way, also correspond to the expected value decison and the worst case
decision respectively.

As mentioned earlier, we also ran the analysis, eliminating the electricity variable
as well as the choice of using one or two passes for the FT reactor in order to in-

13Computer was a DELL precision T7400 model with a Intel Xeon processors, Windows XP
operating system and 4GB of RAM.
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Figure 8-11: Breakdown of continuous variables in the Mean-variance e�cient set

176



Variable Value
Gasifier type Entrained Flow

Syngas fraction for electricity 0
FT Catalyst Cobalt
FT selectivity 0.88 (cobalt minimum)

Autothermal reformer Yes
One or 2 passes through FT 2 passes

Table 8.9: Structure of BTL process represented in the FSD and SSD set, where all
the variables were varied

Variable Number in set Variable Number in set
EF Gasifier 88 Autothermal reformer 88
CFB Gasifier 34 No reformer 34
Co catalyst 98 One pass through 29
Fe catalyst 24 Two pass through 93

Table 8.10: Breakdown of process structure variables in the Mean-variance e�cient
set
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Figure 8-12: Cumulative distribution for all the decisions in the SSD e�cient set
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Figure 8-13: Cumulative distribution for two decisions in the SSD set corresponding
to the expected value and worst case decision

Objective Number of Decisions

FSD 11
SSD 11

Mean-Variance 111

Table 8.11: Number of decisions in the Stochastic Dominance and Mean-Variance
e�cient set with reduced decision variables

crease the number of simulations. Eliminating both variables reduces the decision
space by a factor of 22 and enabling us to run 10,000 simulations of the remaining
decision variables. Table 8.11 shows the sizes of the e�ciency sets of the di↵erent
objectives. As we see, the size of the uncertain sets for both the FSD and SSD sets
remain unchanged while the size of the mean-variance e�cient set reduces by 11. The
breakdown of the new MV sets are shown in Table 8.12 and Figure 8-14.

The results presented here however mask one very important variable - the un-
certainty in the supply of the feed. So far, we have assumed that once a capacity
has been determined, there is corresponding certainty in the amount of biomass gen-
erated. In order to see how the biomass uncertainty a↵ected this, we amended the
models to include this uncertainty. To do this, we assumed that during the design,
a nominal yield of 15 wet tons/hectare was assumed for the farm size that will pro-
duce the required inlet capacity. Once this was determined, the overall plant cost
was fixed. Next, we assumed that for the real plant, the farm size stayed constant
but the yield from it varied according to a uniform distribution that ranged from 7
tons per hectare to about 23 tons per hectare. This varying yield was then used to
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Variable Number in set Variable Number in set
EF Gasifier 74 Autothermal reformer 78
CFB Gasifier 37 No reformer 33
Co catalyst 85 One pass through 0
Fe catalyst 26 Two pass through 111

Table 8.12: Breakdown of process structure variables in the Mean-variance e�cient
set
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Figure 8-14: Breakdown of continuous variables in the Mean-variance e�cient set
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Objective Number of Decisions

FSD 11
SSD 11

Mean-Variance 175

Table 8.13: Number of decisions in the Stochastic Dominance and Mean-Variance
e�cient set with uncertainty in feed
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Figure 8-15: Cumulative distribution for all the decisions in the SSD e�cient set with
uncertainty in feed supply

calculate the actual capacity the plant will process and it was this cost that was used
in determining the operating and miscellaneous costs of the plant and not the overall
deterministic cost.

The resulting sizes of the di↵erent e�cient sets obtained are shown in Table 8.13.
The FSD and SSD sets remain teh same but the composition of the mean-variance set
changes a bit as shown in Table 8.14 and Figure 8-17. The cumulative distributions
of all the decisions in the SSD e�cient set are shown in Figure 8-15 and the expected
value and worst-case decision distributions are shown in Figure 8-16.

8.6 From e�cient sets to decisions

Like the previous case studies, we examined di↵erent ways of further pruning the
e�cient set.
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Figure 8-16: Cumulative distribution for two decisions in the SSD set corresponding
to the expected value and worst case decision with uncertainty in feed supply

Variable Number in set Variable Number in set
EF Gasifier 74 Autothermal reformer 78
CFB Gasifier 37 No reformer 33
Co catalyst 85 One pass through 0
Fe catalyst 26 Two pass through 111

Table 8.14: Breakdown of process structure variables in the Mean-variance e�cient
set when uncertainty in feed is introduced
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Figure 8-17: Breakdown of continuous variables in the Mean-variance e�cient set
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Figure 8-18: Using ASSD to screen the BTL SSD e�cient set yields no change in the
number of decisions present in them

Almost Stochastic Dominance Running the ASD algorithm on the e�cient set
gives the plot shown in Figure 8-18. There is no reduction observed in the size of
the e�cient set because the intersections between the (integrals of) the distributions
occur at places with significant probabilities of occurence. As a result, the value of
✏ required to observe a significant reduction in the size of the e�cient set is much
larger and may now be very dependent on the particular decision maker.

The use of alternative metrics As was done in the previous case-study, we used
the profitability index as an alternative metric in order to reduce the size of the
e�cient set. The decisions present in the SSD e�cient set are similar to the decisions
present in the e�cient set using the net present value metric. However, the major
di↵erence is that instead of the cobalt catalyst in use in the FT reactor, the iron
catalys is largely used. This would have implied no common decision in the set - but
there was also the decision to build the 5000 tons/day option also using the cobalt
catalyst. The structure is outlined in Table 8.15.
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Variable Value Variable Value
Gasifier type Entrained Flow Gasifier type Entrained Flow

Syngas fraction for electricity 0 Syngas fraction for electricity 0
FT Catalyst Cobalt FT Catalyst Cobalt
FT selectivity 0.6 (iron maximum) FT selectivity 0.88 (cobalt maximum)

Autothermal reformer Yes Autothermal reformer Yes
One or 2 passes through FT 2 passes One or 2 passes through FT 2 passes
Mass of biomass processed 2750 - 5000 tons/day Mass of biomass processed 5000 tons/day

Table 8.15: Structure of BTL process represented in the SSD set using the profitability index
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Parameter Sensitivity Parameter Sensitivity
Biomass Price 0.00 EF carbon e�ciency 0.00
Gasoline Price 0.00 CFB syngas e�cieny 0.00
Diesel Price 0.53 CFB carbon e�ciency 0.00

Electricity price 0.04 Discount rate 0.02
Moisture content 0.00 FT 1 pass e�cency 0.00
Cost multiplier 0.01 FT 2 pass e�ciency 0.02

Electricity conversion e�ciency 0.00 Biomass yield 0.42
EF syngas e�ciency 0.00 - -

Table 8.16: Average, total sensitivity indices for the di↵erent parameters and for the
decisions in the SSD e�cient set

Thus the common decision in both e�cient sets is to use the structure obtained
from the net present value metric (using cobalt instead of iron), building a plant with
a capacity of 5000 tons per day.

Sensitivity analysis In further examining the SSD e�cient set, it is first useful
to determine which input uncertainties are driving the uncertainties in the outputs
as a means to figuring out possible next steps. We thus carry out a total sensitivity
analysis (discussed in Chapter 3) on all the decisions in the set using all the parameters
in the study. The average values of the sensitivities across the decisions are given in
Table 8.16

This sensitivities were calculatd using 10,000 samples - enough for convergence.
As can be seen, the two most significant uncertainties - driving essentially all the
variation in the output are the diesel price and the biomass yield. The petrol price is
absent because in our model, we have assumed it to be perfectly correlated with the
diesel price. The break down of the sensitivities for both these parameters are shown
in Figure 8-19. It should be emphasized that this sensitivities were calculated using
the decisions in the SSD e�cient set, hence the seeming irrelevance of many of the
other parameters - as most of the variables that depend on these parameters were not
varied.

The sensitivity of the biomass yield is seen to grow with biomass feed capacity
while that of the diesel price falls almost the same way. Both of these together account
for more than 90% of the variation in the net present value of the designs. Thus, any
attempts focused on reducing the uncertainty in the outcome will do especially well
by targeting those two variables. Biomass yield may be reduced for by getting another
source of carbon to balance low yields - for example a combined input that allows
for natural gas processing, instead of relying solely on biomass. This profitability of
this approach will have to be considered in conjunction with whatever potential tax
credits and benefits (sustainability related) that might have accrued to building a
purely biomass to liquids plant.

The variation in energy prices can be mitigated by negotiating long term buy-sell
contracts where possible, the likelihood of rising energy prices due to increasing global
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Figure 8-19: Variation of total sensitivitiy indices of the diesel price and biomass with
biomass feed capacity for designs in the SSD e�cient set

demand making this a tenable proposition to prospective buyers.

8.7 Conclusions

This case-study focused on the design of a facility that converts biomass to liquid
fuels and electricity. A range of decision variables were incorporated into the problem
- with the goal to select both a structure and a processing capacity for the facility.
Our analysis in both the deterministic and the uncertain case showed that the best
structural design for the facility was one that used an entrained flow gasifier, a cobalt
catalyst for the FT process and maximized the production of fossil fuels over electricity
by reforming methane generated in gasifier and recycling the products of the FT
reactor. This overall process structure is identical to that in Figure 8-5. This is
reproduced below in Figure 8-20. The di↵erence in the two figures is simply that the
capacity choice is not fixed for the uncertain case as discussed below.

In the deterministic case, the best design was the maximum possible capacity of
5000 tons per day as the combination of economies of scale and production output
contributed to a very positive net present value. In the uncertain case however, the
capacity choice was the one and only design variable that varied in the set - with
the full range of capacities present. From the distributions, we could see that even
though the NPV grew with capacity, the worst possible outcome also worsened and
so, as is typical with the SSD analysis, the degree to which the possibility of loss can
be tolerated by the decision maker will ultimately determine the capacity selected.

In terms of the comparison with the di↵erent e�cient sets, we observed that the
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Figure 8-20: Best overall process structure for the conversion of Biomass to liquid
fuels and electricity

FSD and SSD sets produced identical decisions but were by far more e↵ective in
pruning the initial feasible set than the mean-variance approach was. Both produced
an e�cient set of 11 decisions as compared with the 175 decisions produced by the
mean-variance approach.

The use of almost Stochastic dominance made no di↵erence to the size of the
e�cient set while the use of the profitability index had the common decision with the
NPV metric to produce 5000 tons of biomass per day with the cobalt catalyst.

In analyzing the key parameters driving the SSD set, it was discovered that the
energy price and the biomass yield had far more e↵ect than any of the other vari-
ables. Thus if uncertainty reduction were part of the next stage of analysis, these two
variables would be the most important to focus on.

Thus we conclude from the study that the optimal BTL structure is one that
maximizes the production of biofuels over the production of electricity. The structure
to be used is that of an entrained flow gasifier, a cobalt catalyst in the FT reactor, an
autothermal reformer (for reforming the methane gas produced) and multiple passes
through the reactor to maximize the conversion of the syngas to biofuels. While the
use of an alternative metric - the profitability index - had the common decision for
the capacity to be designed for, the original SSD set and the results of the sensitivity
study suggest the gathering of more information about biomass yields and the energy
prices in order to better decide the capacity.
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Chapter 9

Conclusions and Future work

This thesis focused on the application of Stochastic Dominance as a tool for project
screening and selection in the presence of uncertainty and demonstrating its perfor-
mance on a number of case studies. First we give a summary of the background issues
behind the need for a new method for project screening, discuss lessons learned from
the case studies and highlight the key contributions of this thesis. We then focus on
some of the di↵erent directions that could be explored in furthering the use of the
framework developed in this thesis.

9.1 Summary

In laying the groundwork for the method, we discussed uncertainty and its e↵ects on
the decision problem. The presence of uncertainty significantly changes the nature and
structure of the design problem and it is important that it is well characterized and
properly incorporated into process design. In the absence of uncertainty, the decision-
making problem reduces to one of proper selection of scoring metrics and being able to
find a commensurable basis for which to evaluate multiple dimensions of the decision
problem (example safety, profitability, market share, etc). For projects that can
be evaluated on a single dimension, the decision problem becomes an optimization
problem and once a mathematical representation for the problem can be formulated, it
is all done. Uncertainty makes even the simplest of these problems more complicated
by adding the element of risk - defined informally as the failure to achieve the desired
objectives - and learning to make good decisions that take this into account is what
great firms learn to do in practice. .

This led us to decision theory which provides an axiomatic base for evaluating
decisions in the presence of uncertainty. We discussed how, for objective that satisfy
the axioms of transitivity, completeness, continuity and independence, expected util-
ity theory provides the correct framework as it is equivalent to all four axioms. It
recommends that a utility function be constructed over the outcomes and an expec-
tation (a probability weighted average) be taken and used as a score of each decision.
The decision with the highest expected utility should be taken.

The challenge with using expected utility theory is that the utility function has
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Study No. of Feasible Options Mean-Variance FSD SSD
Reactor-Separator 44 25 13 10
Crop-selection 88 22 45 21

Biomass-to-Liquids 21000 175 11 11

Table 9.1: Summary of the results from the di↵erent case-studies

to be determined. Elicitation techniques where decision questions are posed to the
decision maker and the results used to fit an objective function su↵er from a number
of errors [122] and it can be di�cult to get consistent measurements. However, we
pointed out that often we know the preference group of the decision maker, even when
we lack information on the specific form of the utility function. The question that
naturally arises from that point is whether we can use this knowledge to screen options
and eventually make decisions and, if we could, how to go about doing so. That was
where Stochastic Dominance was introduced as the framework that allows us to do so.
Stochastic Dominance has been shown to be a general method for incorporating risk
preferences into the decision-making process. It is consistent with classical decision
theory, it makes minimal assumptions of the structure of the utility functions of the
decision makers and of the nature of the distributions of the uncertainty and under
certain conditions can be shown to be equivalent to the other objectives.

We demonstrated the method on a number of case-studies which we discuss in
the subsequent section. Stochastic Dominance acts primarily as a screen for decision
as it produces an e�cient set of decisions - a group of decisions that the decision
maker will find favourable - rather than a specific decision. We therefore investigated
di↵erent ways for reducing the e�cient set and also summarize their results below.

9.2 Lessons from Case Studies

As mentioned earlier, we applied the framework developed to a set of case studies: a
reactor-separator design problem, crop selection for a biomass farmer and the design
of an industrial facility for the production of liquid fuels from biomass. In each of these
case-studies we implemented the Stochastic Dominance framework and compared it
primarily with the Mean-Variance approach. Table 9.1 summarized the outcomes of
the three studies

As we see, Stochastic dominance was able to reduce the size of the e�cient set
in all cases - although the degree of reduction varied, with the most significant being
the Biomass-to-Liquids case which saw a reduction of more than 99% of the feasible
set. In the crop-selection case where there is not much di↵erence between the SSD
and mean-variance, we suggest that the nature of outcome distributions may be the
issue, as, under conditions discussed in Chapter 5, Stochastic Dominance can give
results that are similar to the mean-variance method.

As mentioned, we used utility on the above demonstrations and proceeded to
examine di↵erent approaches to reducing the e�cient set. The Tables 9.2 and 9.3
summarize two of the methods used to do this
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Study SSD ASSD
Reactor-separator 10 1
Crop-selection 21 10

Biomass-to-Liquids 11 11

Table 9.2: Using ASSD to reduce the Stochastic Dominance e�cient set

Study SSD With another metric
Reactor-separator 10 3
Crop-selection 21 4

Biomass-to-Liquids 11 1

Table 9.3: Using an alternative metric to reduce the Stochastic Dominance e�cient
set

From both tables, we see that the use of ASSD can give improvements in the
e�cient set - although this is case dependent. The use of an alternative-metric also
gives a reduction in the e�cient set, although, depending on the particular alternative
metric, this can have some overall bias in the particular decision left. For example,
the initial metric in the crop-selection study was the NPV which takes scale into
account. The alternative metric was the use of the benefit-cost ratio (profitability
index) and this reduced the e�cient set to the smallest farms in initial set. In that
case, those results may be less than satisfactory since the size of the farm may not
be su�cient to produce enough biomass for the ultimate use of the facility.

In addition to the two methods discussed above, we showed how sensitivity analy-
sis can be used to identify the key input uncertainties that are responsible for most of
the uncertainty in the output. This is important because process design and project
selection is often iterative and identifying the uncertainties helps to illuminate the
areas where the most value can be obtained in future stages focused on uncertainty
reduction. Once these uncertainties are identified and eliminated, they can serve to
reduce the size of the e�cient set. For the case studies the key input uncertainties
are summarized in Table 9.41.

To demonstrate the e↵ect of reducing the uncertainties on the size of the resulting
e�cient set, we modelled new uncertain distributions (as though we had perfomed
the step of getting more information) for the key parameters in the second case study

1We should note that the input uncertainties in the first case-study were preselected before the
initial analysis

Study Key uncertainties
Reactor-separator Reaction-rate, product selling price
Crop-selection Growth cost and selling price of crops

Biomass-to-Liquids Energy price, biomass yiels

Table 9.4: Key uncertainties in the di↵erent case-studies
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and were able to show that it resulted in a reduction from 21 to 8 options in the
e�cient set.

Overall, we believe the SD framework is a useful approach to screening and ul-
timately selecting among di↵erent projects. There are, however, a number of areas
where the method can be improved or extended and we o↵er some suggestions in the
next section

9.3 Future work

This thesis has demonstrated the applicability of Stochastic Dominance as a tool for
screening and selecting among projects in the presence of uncertainty. However, much
still remains to be done in terms of refining the method and making it more generally
applicable. From our present study, a list of promising directions for investigation
emerge and they are discussed below

9.3.1 Optimization algorithms for frontier determination

In this work, in evaluating the dominance of certain alternatives within a set of feasible
options, we used the pairwise comparison approach that defines traditional Stochastic
dominance - albeit modified to reduce the number of alternatives we compared. The
pairwise approach is very simple to use but is computationally intensive. Convex
Stochastic Dominance used linear programming methods to eliminate dominated al-
ternatives from a set of options although no study has been carried out to determine
what the relative computational gain over the traditional approach is (you may need
to do that).

In addition, both traditional SD and convex SD still require the discretization
of continuously variable options (like volume in the reactor-separator example) so
that a finite set of alternatives can be evaluated for pairwise dominance. This is
unlike the mean-variance approach that can allow the use of continuously varying
alternatives under certain conditions. Under the assumptions of the capital asset
pricing model, the mean-variance e�cient frontier is known and can be determined
without discretizing the alternatives.

The Stochastic Dominance framework developed will thus be vastly improved if
ways of implementing the methodology in a continuous fashion were developed as
it will allow us take advantage of some of the vast machinery that already exists in
solving these kinds of problems.

9.3.2 Decision statistics and significance

Decision making under uncertainty requires the knowledge of the probability distri-
butions that govern the input uncertainties. Often times, these distributions are not
known precisely - their parameters have to be estimated from data or inferred using
theoretical principles. With elicitation from data comes the potential for estimation
errors which can be propagated through the model to the distributions obtained for
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the outputs. Since these output distributions are used in the evaluation of dominance,
it is possible that dominance may be determined where none exists, or two projects
may be deemed to be in the e�cient set where, in reality, one decison does dominate
another.

Mcfadden [72] discusses and develops some statistical tests for Stochastic Domi-
nance that may be useful in resolving this issue and may potentially be able to help
with setting the value of ✏ in the Almost Stochastic Dominance framework by relating
it in some way to the errors inherent in the process of estimating the distributions.
some of the issues related to thetesting Stochastic Dominance.

9.3.3 Using black box models

All the case-studies in this thesis were developed using equation-based models i.e.
we knew the constitutitve equations that related the models input to the outputs
and used these, in conjunction with the uncertain distributions in the parameters
to determine the output distributions and then subsequently determine dominance.
However, nothing in the Stochastic Dominance framework developed requires that we
know the functional forms of the models. Rather, we only need some relationship - a
black box - that can take in process inputs and produce the corresponding outputs.
The process design space in Chemical Engineering uses these kinds of models a lot
and it will definitely be a boost to the appeal of the framework we developed to
demonstrate its applicability on those kinds of models too.

9.3.4 Dynamic uncertainty and dynamic decision making

Our focus in this work was on static decisions and static uncertainty i.e. the decisions
regarding the process configuration and capacity are made at the beginning of the
project phase and don’t change throughout the project life. The same goes for the
uncertainties a↵ecting the process - they have distributions that remain fixed and
don’t change with time.

Though this can sometimes be an adequate representation of certain decisions and
uncertainties (like technical and process uncertainties), it is by no means a complete
one as we recognize that this assumption introduces some simplification into the
problem. Market uncertainties - like product prices, raw material costs, etc - are
dynamic in nature. Their uncertainties follow stochastic processes and can be a bit
more involved to model. In addition, companies rarely make decisions and stick by
them, come what may. They respond to changing market conditions by altering their
decisions - scaling down capacity or shutting down an exisiting facility in bad market
conditions and expanding and entering new markets in good ones. This flexibility
is a valued asset in decision scenarios and its presence in certain cases can greatly
increase the value of an engineering design. Options theory - both in financial and
real assets - has largely developed to analyze and correctly value flexibility.

Using Stochastic Dominance to value flexibility may introduce new insights to
the field currently not provided by the methods currently in use. In particular it
may highlight how the inclusion of preferences a↵ects the valuations and may help
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designers make better informed decisions as to what flexibilities are ultimately worth
incorporating in the long run. Readers interested in learning more about financial
options are encouraged to see the book by Dixit and Pindyck [31] while those more
interested in real options in understanding and valuing flexibility in engineering de-
signs as well as more discussion on valuation approaches to flexibility and design are
referred to the book by de Neufville and Scholtes [29].

9.4 Thesis Contributions

To the best of our knowledge, we believe this thesis has made the following contribu-
tions

1. Presented Stochastic Dominance as a viable framework for chemical
engineering project selection and process design under uncertainty.
Stochastic dominance (in particular Second order SD) is little known and not in
much use in the Chemical Engineering field as a decisin making framework. We
have, by this work, introduced the concept more comprehensively2 and showed
it is a viable alternative for screening and selecting among project alternatives

2. Demonstrated its application via the use of a number of case-study
examples and compare with other metrics presently in use. Stochastic
dominance is a general objective function framework for incorporating risk under
the expected utility decision framework (Rothschild and Stiglitz, 1970). We
implemented these algorithms in a tool we develop on di↵erent project selection
scenarios and compare the performance of alternative implementations of the
algorithms and explore their use to the di↵erent project selection scenarios.

3. Demonstrated ways in which it can be further refined to give unique
decisions when needed. We have done this by exploring how the methodology
can be embedded in the stage-gate decision making framework that is used in
engineering project decisions.

2First order stochastic dominance is briefly mentioned in [112] but in a cursory, illustrative idea
of the concept using a very simple example and it doesn’t explore the concept in depth
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Appendix A

Models for Reactor Separator
Problem

This appendix contains the technical and economic models used for the Reactor-
Separator Problem. The model structure follows that developed by Kiss ??.

A.1 Technical Model

A.1.1 First Order reaction A �! C

We build a simple model of a reactor and a separator with the system displayed in
Figure A-1. The system is for the conversion of a reactant A to a product C via an
irreversible first order reaction given by

A �! C

We represent the total number of moles (molar flow rate) in each stream by Fi

and the mole fraction of component A in the reation by xAi, where i is a subscript
that indicates the particular stream. With these equations, we can write material
and component balances for each unit (the mixing point, reactor and the separator
as follows:

For the mixing point, we have the total balance as

F1 + F2 = F3 (A.1)

and the component balance as:

F1xA1 + F2xA2 = F3xA3 (A.2)

And for the reactor, we have,
F3 = F4 (A.3)

The above equation holds because of the reactor stoichiometric ratio: for every
mole of reactant A that reacts, one mole of C is formed keeping the total constant.
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Figure A-1: Model of reactor-separator system for a single reaction

The component A balance however is given by

F3xA3(1�X) = F4xA4 (A.4)

where X is the conversion (per pass) for the reactor. And finally, the balance for the
separator is given by the equations

F4 = F2 + F5 (A.5)

And the component balance as:

F4xA4 = F2xA2 + F5xA5 (A.6)

In the above system of reactions, we have 11 variables (5 streams, components
and the conversion) and 6 equations relating them. As a result, we have 11 � 6 = 5
degrees of freedom or variables that we have to fix to fully specify the system. First,
we choose to specify the following 5 variables: F1, xA1, xA2, xA5 and X. We will
revisit the specification of the conversion when we analyze particular reactors and
reaction kinetics.

We can combine equations A.3 A.1 and A.5 to get the overall balance and show
that

F5 = F1 (A.7)
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And use equation A.3 in equation A.4 to get

xA4 = xA3(1�X) (A.8)

Using these new relationships to eliminate F3 and F5, we get the following set
equations

F1(xA1 � xA2) = F4(xA3 � xA2) (A.9)

F1(xA5 � xA2) = F4(xA4 � xA2) (A.10)

From the second equation in A.10, we can write F4 as

F4 =
F1(xA5 � xA2)

xA3(1�X)� xA2
(A.11)

where we have substituted the value of xA4 from equation A.8. We can then
substitute equation A.11 into the first equation in A.10 and simplify to obtain an
equation in terms of xA3 or

xA3 =
xA2(xA1 � xA5)

(1�X)(xA1 � xA2)� xA5 + xA2
(A.12)

Thus we obtain equations for all the non-specified variables in terms of the specified
ones.

So far, we have not assumed any particular reactor or reaction kinetic model and as
such the above set of equations (being based on mass balances alone) can be adapted
to any system that has just two components. We will first focus on adapting it to a
CSTR.

CSTR For a CSTR, we have the relationship between the conversion and the vol-
ume, V of the reactor given as

V =
FAoX

�rA
(A.13)

where FAo is the entering molar flowrate of reactant A and �rA is the reaction
rate - the rate of consumption of reactant A. For a first order reaction (which we
assume our present reaction system is), we hvae that

�rA = kCA (A.14)

where k is the reaction rate constant and CA is the concentration of the reactant
at the exit [36]. For our reactor separator system, we have

FAo = F3xA3 (A.15)

We assume that overall the system operates at constant density so that we can
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write
CA = CAo(1�X) (A.16)

With this system of equations, if we specify the volume (instead of the conversion
as we did previously), we can substitute the various expressions into the reactor
equation A.13 and simplify to obtain

V =
F3X

kC1(1�X)
(A.17)

where C1 is the concentration of A in the initial flow stream. Defining the plant
Damkohler number [57] as

Da =
kC1V

F1
(A.18)

and substituting for F3 using equation A.3 and equation A.11, we transform equation
A.17 to obtain

1

X
=

xA5 � xA2

Da[xA3(1�X)� xA2]
+ 1 (A.19)

which, when we recall equation A.12 and substitute for xA3 in equation A.19 gives

1

X
� 1 =

xA5 � xA2

Da[ xA2(1�X)(xA1�xA5)
(1�X)(xA1�xA2)�xA5+xA2

� xA2]
(A.20)

Equation A.20 is a non-linear equation in one variable, X, and can be solved to
obtain a relationship between X and Da that is more general than that given in
the literature by Andrieu [57]. To obtain their solution for perfect separation (i.e.
pure recycle and pure product), we have that xA5 = 0, xA2 = 1 and xA1 = 1 and
substituting into the above equation and simplifying gives

1

X
� 1 =

1

XDa
(A.21)

which can be rewritten to give the expression they obtain, i.e.

X =
Da� 1

Da
(A.22)

We plot the stability for a range of Da for both the case above and the case where
xA5 = 0.2, xA2 = 0.8 and xA1 = 1.

X =
Da

1 +Da
(A.23)

which is stable for all values of Da.
From equation A.22, we see that the system is stable for values of Da � 1 as

values of Da < 1 results in an unrealistic reaction system (negative conversion). We
will see later that for imperfect separation (i.e. values of xA2 < 1 or xA5 > 0, there is
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Figure A-2: A plot of reactor conversion versus plant Damkohler number for the
CSTR reactor separator for both perfect separation and imperfect separation

also an upper bound to the value that the Damkohler number can take else it will also
lead to stability. This is in contrast to the case of a single CSTR with no separator
attached to it where the reaction system is stable for all values of the Damkohler
number as the conversion-Damkohler number equation for that case is [57]

PFR Most of the equations that we developed for the CSTR remain valid for the
plug flow reactor (PFR) since they largely involve the same material balances. Where
they di↵er however is the equation that relates the volume and the conversion, which
for the PFR is given by [36]

VPFR = FAo

Z
dX

�rA
(A.24)

where, in this case, FAo is the inlet molar flowrate of the reactant, and �rA is the
reaction rate. Substituting the relevant expressions from the CSTR model, we have

VPFR =
F3xA3

kCA3

Z
dX

1�X
=

F3xA3

kCA3
ln

1

1�X
(A.25)

Note that the concentration and the molar flowrate of a particular stream are
related by the equation

CA =
FAi

⌫i
(A.26)

where ⌫i is the volumetric flowrate of stream i. By making the assumptions about
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volumetric flowrates (being directly proportional to molar flowrates given that total
moles are conserved), we get

⌫i = ⌫1
Fi

F1
(A.27)

where F1 is the inlet flowrate of the stream to the plant. Using the above rela-
tionships, remembering that FAi = FixAi, we can substitute into the equation A.25
and rearrange terms to get

X = 1� exp(
�kCA1V

F3
) (A.28)

Also, by recalling the equaton for F3 and substituting for the Damkohler number
defined in equation A.18 we have that

X = 1� exp(
�Da

(xA5�xA2

xA3(1�X)�xA2

) (A.29)

In which we can finally substitute the expression developed for xA3 in equation
A.12 and then solve the nonlinear equation for X using a nonlinear solver in MATLAB

A.1.2 Second order reaction A + B �! D

The equations for the second order reaction are quite similar to that for the first order
reaction but with more variables to keep track of. In the first case, our model had 11
variables in total and we could write 6 independent equations which meant we had to
fix 5. As shown in Figure A-3, there are 7 streams, each with 3 variables (flowrate and
two components to track, A and B) as well as conversion which makes 22 variables in
all. We can write 12 independent equations - total flowrate and component balances
for A and B around mixers 1 and 2 as well as around the reactor and the separator.
So we have to specify 10 variables in order to fully solve the system. In this model
development, we will begin (like the previous one for the single reaction order) that
we can specify the conversion and then when we analyze the individual reactor types,
we will then transfer the specification from the reactor to the volume which is the
decision variable.

For the mixers and the reactor, the three equations follow the order

Fi = Fj + Fk (A.30)

FixAi = FjxAj + FkxAk (A.31)

FixBi = FjxBj + FkxBk (A.32)

where the subscripts represent the di↵erent streams going in and out of the unit.
In such a way, relationships can be written that relates streams 7, 1 and 2; streams 4,
5 and 6 and streams 3, 5, and 7 and account for 9 out of the twelve equations for the
system we are trying to build. For the reactor, the big di↵erence between this system
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Figure A-3: Reactor-Separator flow sheet for the reaction case A + B �! D

and the earlier first order system is that total number of moles is not conserved in the
reaction. As a result, we need to carefully do balance. For components A and B, the
amount of reactant coming in must equal the amount entering plus any consumed by
the reaction which leads to the equations

F4xA4 = F3xA3(1�X) (A.33)

F4xB4 = F3(xB3 � xA3X) (A.34)

Note that for this system, we define conversion with respect to the reactant A,
which we assume to be the limiting reactant. For the flowrates, we do a total balance
which yields

F4 = F3(1� xA3X) (A.35)

To fully solve the system of equations, we need to specify 10 variables. From
physical insight, we select streams 1 and 2 and all the components (six variables),
conversion (which we can get from knowledge of the volume), xA5, xB5 and xA6. Once
all of these are specified, we can write out the equations for the entire system for the
unknown variables as follows:
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F7 = F1 + F2 (A.36)

xA7 =
F1xA1 + F2xA2

F7
(A.37)

xB7 =
F1xB1 + F2xB2

F7
(A.38)

F5 =
F7(xA7(1�X + xA6X)� xA6)

xA5X(1� xA6)
(A.39)

F3 = F7 + F5 (A.40)

xA3 =
F7xA7 + F5xA5

F3
(A.41)

xB3 =
F7xB7 + F5xB5

F3
(A.42)

F4 = F3(1� xA3X) (A.43)

xA4 =
F3xA3(1�X)

F4
(A.44)

xB4 =
F3(xB3 � xA3X)

F4
(A.45)

F6 = F7 � F3xA3X (A.46)

xB6 =
F4xB4 � F5xB5

F6
(A.47)

The equations developed is valid for any two-component reactor separator system
with the variables specified as highlighted and applies to both the CSTR and the
PFR. The di↵erence in the model for the two reactor types lies in the equation for
reactor volume. For second order kinetics, we assume the reaction model

�rA = kC2
A (A.48)

Combining this with equation A.13, we obtain the volume of a reactor needed for
a given conversion to be

VCSTR =
FAoX

kC2
Ao

(A.49)

where Ao indexes the entry conditions for the limiting reactant. Substituting for the
appropriate expressions for FAo and CAo from Figure A-3 gives the reactor volume
equation as

V =
F3xA3X

kC2
A4

(A.50)

The PFR, on the other hand has the reactor volume equation for second order
kinetics as
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VPFR =
FAo

kC2
Ao

X

1�X
(A.51)

This equation is obtained by integrating the expression obtained from substituting the
rate equation A.48 into the expression in equation ??. Subsituting for the appropriate
expressions for FAo and CAo as we did for the CSTR case gives the reactor volume
equation as

V =
F3xA3X

kC2
A3(1�X)

(A.52)

Equations A.50 and A.52 are then incorporated into the overall mass balance sys-
tems developed for the general reactor-separator system to obtain the design equation
for the particular system under study.

A.2 Economic model

In addition to the technical model, we need to build an economic model on which we
can run the decision framework. Over the lifetime, L, of the plant, we have the total
cost (and for the moment, we are going to ignore discounting)

CostT = Costreactor + Costseparator + Costreactant (A.53)

and the total revenue from the system is given by the sales of the product i.e

Revenue = salesproduct (A.54)

And the total profit is given as

Profit = Revenue� Cost (A.55)

To thus be able to obtain the profit (and later be able to do a proper Net Present
Value analysis when we incorporate discounting), we need to determine each of the
various components of equations and we will estimate them accordingly

Reactor cost From elementary principles, we determine the cost of the CSTR to
be

Ccstr / V 2/3 =) Ccstr = k1V
2/3 (A.56)

where V is the volume of the reactor and k1 is the constant of proportionality. For
a PFR, the reactor being more similar to a cylinder than a sphere, we have that the
cost scales linearly with the volume or

Cpfr / V =) Cpfr = k2V (A.57)

Also from first principles, we determine the cost of a separator as
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Csep / f1(N)⇥ f2(D) =) Csep = k2 ⇥ f1(N)⇥ f2(D) (A.58)

where N is the number of trays in the column and D is the diameter and f1 and
f2 are functions. The number of trays, for example, a↵ects the total height of the
column. A simplified equation for the total number of trays in binary distillation is
given by Fenske’s equation [71] which is given as

N =
ln[xA2(1� xA5/xA5(1� xA2]

ln↵ac
(A.59)

where ↵ac is the average relative volatility of the components. To correct for the
fact that this is an ideal number of trays, we can account for real trays by using an
e�ciency i.e

Nr =
NF

✏
(A.60)

where ✏ is the e�ciency of separation and Nr is the total number of trays. Given
the number of trays, we can then proceed to calculate the height of the distillation
column as

HC = Hmin + h⇥Nr (A.61)

where HC is the height of the column, Hmin is the total height of the column and
h is the average tray separation.

From [], we see that the diameter of a column is proportional to the square root of
the flowrate within it. Taking the inlet flowrate as a first order estimate of the total
flowrate gives

D / F 1/2
4 =) D = Dmin + k3 ⇥ F 1/2

4 (A.62)

where Dmin is the minimum diameter, k3 the constant of proportionality and F4

the inlet flowrate.

The total amount of raw material we assume is purchased over the lifetime, L, of
the plant is given by

Creactant = sA ⇥ F1 ⇥ L (A.63)

where sA is the selling price of a unit amount of A, F1 is the inlet flowrate - all
proper units taken into consideration. And total revenue from the sale of the product
is given by

Revenue = sC ⇥ F5 ⇥ L (A.64)

where F5 is the flowrate of the product and sC is the selling price per unit of
product. Putting this all together, we have that the total profit received from the
reactor-separator system over its lifetime is given by
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Parameter Name Unit Value
C1 Concentration of A kmol/m3 1

kCSTR Rate constant (CSTR) day�1 220
kPFR Rate constant (PFR) day�1 200
k1 CSTR Cost Factor $/m3 20000
k2 PFR Cost Factor $/m3 35000
ksep Dist. Column cost Factor $/m3 5500
Hmin Minimum column height m 2
Dmin Minimum column diameter m 1
htray tray separation m 0.3
✏ tray e�ciency - 0.7
↵ relative volatility - 2
sp product C selling price $/kmol 12
sc reactant A cost price $/kmol 6

Table A.1: Some key parameters in the Reactor-Separator Example

P = L(sCF5 � sAF3)� k1V
2/3 � k2(Dmin + k3 ⇥ F 1/2

4 )(Hmin + h⇥Nr) (A.65)

where P is the profit. If there is a budget constraint on the capital cost, then we
can include the following restriction

k1V
2/3 � k2(Dmin + k3 ⇥ F 1/2

4 )(Hmin + h⇥Nr)  B (A.66)

where B is the budget for the design
The parameters for the problem are given in Tables A.1 and A.2 and table A.3

describes the uncertain parameters used for the simulations.

205



Parameter name Unit Value
C1 Concentration of A kmol/m3 2
C2 Concentration B kmol/m3 2

kCSTR Rate constant (CSTR) day�1 220
kPFR Rate constant (PFR) day�1 200
k1 CSTR Cost Factor $/m3 25000
k2 PFR Cost Factor $/m3 50000
ksep Dist. Column cost Factor $/m3 5000
Hmin Minimum column height m 2
Dmin Minimum column diameter m 1
htray tray separation m 0.3
✏ tray e�ciency - 0.7
↵ relative volatility - 1.75
sp product D selling price $/kmol 17.6
sc1 Reactant A cost price $/kmol 8
sc2 Reactant B cost price $/kmol 6

Table A.2: Some key parameters in the Reactor-Separator Example

Parameter Distribution type Distribution parameters
kCSTR, product C Lognormal µ = 220, � = 20
kPFR, product C Lognormal µ = 200, � = 12
selling price, C Lognormal µ = 15.5, � = 0.7

kCSTR, product D Lognormal µ = 220, � = 25
kPFR, product D Lognormal µ = 200, � = 15
selling price, C Lognormal µ = 17.6, � = 1.4

Table A.3: Description of uncertain parameters for the reactor-separator
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Appendix B

Algorithms and Computational
Cost

In this chapter, we include some of the algorithms that were implemented for the
uncertainty analysis perfomed in the case studies. We also discuss the compuational
cost associated with a number of the objectives that we considered in our analysis.

B.1 Overall Structure

All of the case-studies required a the creation of a deterministic model that takes
in a set of decision variables and a set of parameters and generates the output we
want. For example, in the crop selection model, a deterministic model was created
which took in the crop choices and the farm radius as the decision variables and the
crop selling price, growth cost, yield, establishment costs and the transportation cost
as parameters. With the variables and the parameters, the model returns the net
present value for the particular crop and farm radius. This set of outputs form the
basis for the analysis of the deterministic case.

For the uncertain case, the parameters are allowed to vary according to prescribed
distributions (according to the principles described in Chapter 3). A number of pa-
rameter sets are generated, up to the total number of predetermined parameter sets,
with each parameter in that set sampled from its distribution. The collection of pa-
rameters form the parameter matrix which are then used to generate the distribution
of outputs for each decision variable. Each parameter set is then used to generate an
output for each decision, a ’sample’ from the decision’s output distribution. This way,
a collection of output samples for each decision is generated. The uncertainty analysis
using the di↵erent uncertain objectives (stochastic dominance, mean-variance, etc.)
is then carried out using the uncertainty matrix, indexed by decision.

The algorithms that follow all assume that this matrix, which we call F , has
already been generated. Each column represents a specific decision - such as the
choice of crop and radius in the crop selection case study. The first few rows of each
column contain the details of the decision while the output samples follow in the
remaining rows.
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B.2 The dual-objective Pareto Algorithm

This thesis analyzed a number of dual-objective approaches to selecting projects in
the presence of uncertainty and we often had to determine the e�cient set for these
dual-objectives. To do this, we required two numbers calculated from the samples of
each decision’s output distribution: the mean of the decisions Mj, and the risk-metric
that is used in particular, Rj

1. Once these numbers are calculated and stored in the
respective vectors M and R, the algorithm below is used to determine the e�cient
set

1. Start and set j = 1

2. Take the respective elements of the mean and risk vectors to get the mean-risk
pair, [Mj, Rj]

3. For the remaining decisions to the last decision, take the respective mean-risk
pair - generically labelled [Mi, Ri]

4. Compare Mj and Mi, and R1 and Ri

(a) If Mj > Mi and Rj < Ri, decision j dominates decision i. Eliminate
the rows in M and R corresponding to decision i and move to the next
decision, i+ 1 and repeat step 3.

(b) If Mj < Mi and Rj > Ri, decision i dominates decision j. Eliminate the
rows in M and R corresponding to decision j. Move to decision j + 1 and
go to step 5.

5. Proceed to the next decision j + 1 and return to step 2. Repeat till all the
elements of M and R have been analyzed.

6. Return the decisions corresponding to the remaining indices in M and R. These
decisions form the e�cient set of the the mean-risk dual objective.

7. Stop

B.3 Algorithm for Mean-Variance

With the matrix F and an algorithm for calculating mean-risk e�cient sets, the algo-
rithm for calculating the mean-variance e�cient set follows directly. It is presented
more explicitly below:

1. Start

2. Calculate the mean, Mj and standard deviation, Rj for each decision in F .
Collect these in vectors M and R

1This can be the standard deviation, the absolute semi-deviation or anyone of the many risk
metrics that were highlighted in Chapter 2.
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3. Run the mean-risk algorithm using the vectors M and R.

4. Return the decisions corresponding to the remaining indices in M and R. This
is the mean-variance e�cient set

5. Stop

B.4 Algorithm for FSD and SSD

The algorithm used to obtain the e�cient sets for First and Second order Stochastic
Dominance are given below. Because the SSD e�cient set is a subset of FSD e�cient
set, the algorithm generates both e�cient sets together - but uses the FSD e�cient
set as the springboard for the SSD set. This allows fewer computations because the
initial set for the SSD simulations is the FSD set - often much smaller than the initial
feasible. Like the mean-risk analysis, this set begins with the uncertainty matrix, F .
First we present the FSD algorithm and then the SSD portion of the algorithm.

B.4.1 FSD algorithm

1. Start

2. Sort the samples in each column of F in an ascending order - smallest to the
largest sample - to produce a matrix, G

3. Determine the mean value of each column, Ĝj and re-order the columns with
respect to their means in a descending order such that Ĝ1 > Ĝ2 > ... > Ĝj >
ĜN�1 > ĜN

4. For j = 1 and i going from j + 1 to N

(a) Get the cumulative distributions of Gj and Gi (cumulative distribution
algorithms are described in the next section) - CDj and CDi

(b) For k = 1 : N , compare CDj,k and CDi,k

(c) If CDj,k <= CDi,k for all k, and CDj,k < CDi,k for at least one k, then
decision Gj dominates Gi. Eliminate column i from G and move to the
next decision, Gi+1. Otherwise, leave Gi in the e�cient set and proceed to
the next decision2.

(d) Continue till Gj has been compared with all the remaining decisions Gj+1

to GN

5. Set j = j+1 and return to Step 4. Continue to j = N and stop

6. All the decisions left in G form the FSD e�cient set.
2Note that we don’t have to check that i dominates j because we have already sorted the decisions

based on means and a lower mean distribution cannot dominate a higher mean distribution as
discussed in Chapter 5.
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7. Stop

B.4.2 SSD algorithm

1. Start with the matrix of FSD e�cient set decisions and samples, H

2. Set j = 1. For i : j + 1 to N

(a) Get the cumulative distributions of Hj and Hi - CDj and CDi

(b) Get the cumulative integral of cumulative distributions of CDj and CDi -
FDj and FDi. This is obtained by integrating the cumulative distribution,
CD from 1 to l with respect to the outcome space - where l ranges from
k = 2 to N. For k = 1, CDj,1 = FDj,1

(c) For k = 1 : N , compare FDj,k and FDi,k

(d) If FDj,k <= FDi,k for all k, and FDj,k < FDi,k for at least one k, then
decision Hj dominates Hi. Eliminate column i from H and move to the
next decision, Hi+1. Otherwise, leave Hi in the e�cient set and proceed
to the next decision3.

(e) Continue till Hj has been compared with all the remaining decisions Hj+1

to HN

3. Set j = j+1 and return to Step 2. Continue to j = N and stop

4. All the decisions left in H form the SSD e�cient set.

5. Stop

The algorithms for higher order stochastic dominance are similar although Step
4 is a litle more intricate for TSD. Interested readers are referred to [64] for more
details about the subtle nuances in the algorithms.

B.5 Cumulative Distribution Algorithm

At the heart of the FSD and SSD algorithm lies the generation of cumulative distri-
butions (and integrals of cumulative distributions) needed for pairwise comparison.
These distributions are generated empirically and the algorithms presented here de-
scribe how we do so from the samples obtained from running the models. Because we
use the cumulative distributions for pairwise comparison, our analysis presents the
generation of cumulative distributions for a pair of vectors. The advantage of this
approach is that it minimizes the storage requirements needed during the determina-
tion of the e�cient sets - leading to speed improvements as well as the capacity to
handle much larger sample sizes.

3As in the SSD, we don’t have to check that i dominates j for the same reason highlighted
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This algorithm needs two vectors, A and B which, in general, need not be the
same size. For our analysis, we let l be the number of elements in A, m be the number
of elements in B and n be the number of elements in C. Because some elements in
A may be in B, n <= l +m. Further we assume that the samples from each vector
have equal probabilities - 1

l for samples in A and 1
m in B.

1. Start

2. Merge the samples in A and B into a single output sample, C

3. Sort the samples in A, B and C in ascending order

4. Select ordered matrix A

5. For k = 1 : m

(a) î = 1

(b) For i = î : l

(c) if Ck < Ai then CDA,k =
i�1
l , set î = i, increment k go to Step 5

(d) Else i = i+ 1, return to previous step

6. if Ck >= Al, then CDA,k:m = 1

7. Select vector B and return to step 4

8. Stop

B.6 Computational cost

Below we discuss the derivation of the expressions that we gave Table 5.7 in the
discussion of the computational complexity of the di↵erent objectives in the thesis.

Expected Value For the expected value objective, the determination of the even-
tual decision takes place in two phases: first, the expected value of all the decisions are
calculated - which involves taking the arithmetic mean of m samples for N di↵erent
vectors for a total Nm operations. After this, the maximum of the list of N expected
values has to be obtained leading to an additional 3N

2 comparison operations. Thus
the total compuatational time for the expected value objective is:

CEV = Nm+
3N

2
(B.1)
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Mean Variance For the mean-variance approach, we first have to calculate the
mean and the variance of each of the vectors. As we saw in the previous paragraph,
the computation of the mean requires N ⇥m calculations while that for the standard
deviation requires 3Nm+N calculations - Nm operations to square each element of
the matrix, Nm operations to take the di↵erence from the respective mean (already
calculated), Nm operations to average the squared sums and N square root oper-
ations. Once the means and standard deviations have been computed, we need to
compare them in order obtain the e�cient set. This comparison can be broken down
into two parts.

• First the total number of comparisons across the entire list of projects is N(N�1)
2

which is simply the number of uinique pairwise combinations that can be done
in a list of N object.

• Next within each pairwise comparison, two comparisons are made: a comparison
of the means and a comparison of the standard deviations

All of these give a total cost for the mean-variance approach as:

CMV = Nm+ 3Nm+ 2⇥ N(N � 1)

2
= 4Nm+N(N � 1) (B.2)

First order Stochastic Dominance The FSD procedure takes place in a number
of steps highlighted below

1. To start we first calculate the means of the di↵erent distributions and rank the
means from highest to lowest (as discussed in the algorithm section). This takes
a total of Nm + N steps - Nm to calculate the mean and N as the average
complexity of ranking a list [].

2. Each of the ranked vectors needs to be sorted. Sorting each vector of m samples
takes m logm steps and so the total number of steps to sort all the vectors is
Nm logm

3. Next we carry out pairwise comparisons of the di↵erent vectors in the feasible
set. There are N(N�1)

2 possible such combinations. Each vector comparison
requires that we compare the samples within each vector. This gives m com-
parisons for each pair wise comparison - or a total of mN(N�1)

2 comparisons for
this step.

This thus, yields a total number of steps for the FSD method as

CFSD = Nm+N logN +Nm logm+
Nm(N � 1)

2
(B.3)
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Second order Stochastic Dominance As can be seen in the algorithm section,
the steps required for the computation of second order stochastic dominance are
very similar to those for FSD. However, there is one key di↵erence and that is in
computing the vectors for comparison, we not only sort (as is required for FSD) but
also have to numerically integrate the sorted samples to arrive at the final vector for
comparison. In the previous discussion, we saw that the sorting step for each vector
takes Nm logm. The numerical integration of the ranked sample is a form of growing
average requiring roughly the sum of j terms for the jth sample. Thus in total, the
evaluation of the average requires about m(m�1)

2 operations 4.
Thus, if we replace the computational cost of step 2 in the FSD with the modified

number for the SSD - m logm+ m(m�1)
2 , we get the total number of steps required for

the SSD as

CSSD = Nm+N logN +N(m logm+
m(m� 1)

2
) +

Nm(N � 1)

2
(B.4)

4This is simply the sum of the growing series of numerical computations 1, 2, ..., j, ...,m� 1,m
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